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Abstract

As the body of published literature grows at an accelerating rate, increasingly sophis-

ticated computational methods for natural language processing are required to manage

and mine the written knowledge available to life sciences researchers. One important

topic within this field is the problem of relationship extraction. Given a text about

molecular biology, the challenge is to automatically retrieve the biophysical, biochem-

ical or genetic interactions described therein.

Much progress has been made on this problem and others like it by using statistical

information retrieval techniques, regular expressions, finite state automata, sequence

alignment and other relatively superficial approaches. However, there are a variety of

more linguistically-informed methods available which treat each sentence as a tree or

graph rather than simply a collection or sequence of words.

Various natural-language parsers are available which facilitate this kind of solution,

and the experimental work in this thesis begins with a comparison of several of these

on a standard molecular biology corpus using established benchmarking techniques.

This is followed by some experiments using evaluation measures tailored to specific

biologically-important tasks. A processing pipeline is then described which uses the

best of these parsers, along with several other open-source tools, to produce high-

quality dependency graph representations of input sentences.

Finally, three novel deterministic algorithms for relationship extraction are pre-

sented. Two of these take dependency graphs as input and return interactions between

pre-tagged gene and protein entities, outperforming most existing methods on a stan-

dard publically-available test corpus; the other is a strong baseline method using no

linguistic information. An appendix discusses the related problems of entity recogni-

tion and identification, which—while outside the main scope of this thesis—are pre-

requisites for the development of relationship extraction applications.
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Chapter 1

Introduction

The biological sciences are very much knowledge-driven, with facts recorded in the

text of scientific journals being the gold standard of accepted truth. However, the ex-

ponential growth in the amount of available biological literature (Cohen and Hunter,

2004) and the ever-increasing fragmentation of the life sciences into more and more

specialized disciplines do not bode well for the ability of researchers to find and keep

track of all the information relevant to their fields. The MEDLINE database 1 has added

between 2,000 and 4,000 bibliographic records per working day since 2005, 2 over three

quarters of which have abstracts, and now comprises over 15 million entries. However,

this is only one source of textual biological knowledge, along with full-text electronic

journals and textbooks, patent filings, internal lab and project reports, comments fields

in biomolecular databases, and topic-specific curated repositories such as The Inter-

active Fly3 (Brody, 1999). The development of natural language processing (NLP)

techniques tailored to the biological domain has been driven by the resulting problems

of literature overload that face scientists today.

It is easy to conceive of situations where a biologist’s workload might be lessened

by suitably-targeted literature analysis tools. One scenario involves the construction of

a descriptive picture of the causal relationships between a set of genes that are differen-

tially expressed in a disease state, as revealed by microarray experiments for example.

While it is often possible to make some headway by clustering these genes accord-

ing to their functional annotations, a literature trawl will be necessary in all but the

simplest cases in order to identify the specific regulatory pathways involved (Shatkay

et al., 2000). Another task where the application of text mining techniques has been

seen as a great potential boon is the curation of model organism databases. Curators at

these projects spend many hundreds of biologist-hours each week scanning the newly-

1http://www.pubmed.org/
2http://www.nlm.nih.gov/pubs/factsheets/medline.html
3http://flybase.bio.indiana.edu/allied-data/lk/interactive-fly/

aimain/1aahome.htm
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published literature for discoveries about genes or proteins in the organism of inter-

est, in order to enter the results into publically-searchable databases. Much research

has been focused on developing NLP approaches to finding the appropriate parts of

the appropriate articles and extracting candidate annotations to present to the curators

(Hersh and Bhupatiraju, 2003; Hirschman et al., 2005). More generally, the problem

of integrating structured databases with unstructured textual resources, through termi-

nological indexing or document classification for example, is an ever-present challenge

in industrial-scale biology.

By analogy with data warehousing and data mining in conventional database tech-

nology, the terms ‘document warehousing’ and ‘text mining’ have come to refer to

(respectively) the management and analysis of large collections of unstructured text,

usually using NLP techniques, with help from statistics, and from other branches of

information science (Sullivan, 2001). Some authors restrict the definition of text min-

ing specifically to the deduction or inference of novel facts from multiple documents,

or the process of uncovering latent trends or ‘nuggets’ of previously-unknown infor-

mation in the data (Hearst, 1999), but it is frequently used in a broader sense than

this to refer to any sort of exploratory, explanatory or evidence-gathering analyses of

large corpora or document collections. A good rule of thumb is that text mining is

what someone does—or eventually, what a computer could do unaided—and NLP is

how their software accomplishes it. The terms ‘language engineering’ and ‘[human]

language technology’ are also sometimes used in this context; the first refers to the

process of building an NLP-based system, and the second describes the system itself,

more or less.

The term computational linguistics, meanwhile, refers to the long-established inter-

disciplinary field at the intersection of linguistics, phonetics, computer science, cogni-

tive science, artificial intelligence and formal logic, which again is frequently assisted

by statistical techniques (Jurafsky and Martin, 2000). While it might be tempting to

believe that NLP is just applied computational linguistics, or computational linguis-

tics is theoretical NLP, this is an over-simplification. There is NLP, and indeed text

mining, that does not particularly rely on (or contribute to) linguistic theory or prac-

tice, beyond the use of superficial features like word frequencies (e.g. Jenssen et al.,

2001) or categories (e.g. Hakenberg et al., 2005). The distinction is somewhat similar

to the difference between computational biology and bioinformatics. A bioinformat-

ics specialist might be writing a data visualization plug-in for R, adapting a sequence

alignment algorithm to run in parallel on a grid, or indeed tagging a few thousand

MEDLINE abstracts with an NLP tool, without being said to be “doing computational

biology.” Conversely, pretty much everything a computational biologist does will in-

volve some bioinformatics at some point, but the results of their work may well be of

more interest to the biological research community.

However, the overall aim of this work is to further the state of the art of biological
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text mining by applying linguistically-motivated computational techniques in a novel

manner. As a result, most of the NLP tools, methods and concepts under discussion

will have some degree of linguistic theory behind them, which will be explained to the

level of detail appropriate to the discussion. Unlike a computational linguistics thesis,

however, the ultimate aim is not to understand language better or to bring computers

closer to understanding language. Rather, the intent is to help unlock a valuable source

of scientific knowledge—the written word—so that it can be put to use in the context

of biological research.

1.1 Outline of this thesis

The particular problem area chosen for this project is that of biomolecular interaction

extraction (see Section 1.3 and Section 1.10), a popular task with readily-available test

data. The solutions developed encompass both constituent-based (see Section 1.9.1)

and dependency-based (see Section 1.9.2) models of language, and illustrate several

key concepts in computational linguistics. Chapter 2 and Chapter 3 describe prelimi-

nary experiments performed in order to select the right NLP tools for the job from the

many which are freely available. Chapter 4 presents a complete linguistic processing

pipeline including three new algorithms to infer biomolecular relationships from text,

and describes a successful test of their performance against previously-published re-

sults. Chapter 5 summarizes the experiments in relation to current and future research,

highlights some important lessons learnt from the project and discusses some theoret-

ical and practical issues involved in developing text mining applications. Appendix A

examines the related problems of named-entity recognition and identification, and de-

scribes a prototype solution. For the benefit of non-linguists, Appendix B provides a

glossary of the most important linguistic terms used in this thesis, and Appendix C

gives definitions of the word, phrase and dependency category labels used by the for-

malisms discussed. Finally, Appendix D provides the specifications for MPL, a pattern

description language designed for the information extraction task in Chapter 4.

All of the source code written for this project is available from my website at

http://biotext.org.uk/ along with any errata, updates or additional data that

might appear.

1.1.1 Outline of this chapter

The next section of this chapter contains an overview of the fields of computational

linguistics and NLP, and Section 1.3 discusses some of the goals of biological text

mining pursued by current and previous researchers. Section 1.4 describes some of

the broad strategies or frameworks for NLP algorithm development with reference to

their particular advantages and disadvantages in the biological domain. The six sec-
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tions which follow it each discuss a particular NLP task (or task family) with rele-

vance to bioinformatics, including the goals of the task and its potential applications,

and the computational methods that have been employed in tackling it. Examples are

taken from both biomedical research and the general English domain where possible,

comparing and contrasting the principles followed, the problems encountered and the

degree of success achieved. As each of these sections deals with progressively more

abstract and less well-explored subject matter, particularly in relation to the biomedical

domain, there is a gradual shift in focus from the more practical to the more theoretical

aspects of NLP over the course of the discussion. Finally, Section 1.11 discusses the

motivation for and objectives of the experiments which follow.

1.2 Topics in linguistic computing

NLP and computational linguistics are broad and diverse fields, and the current strands

of research include (but are not limited to):4

� syntactic analysis (Kaplan et al., 2004);

� semantic interpretation (Pradhan et al., 2004);

� language generation (Chambers and Allen, 2004);

� speech processing (Levow, 2004);

� automatic translation (Och et al., 2004);

� prediction of language difficulty (Collins-Thompson and Callan, 2004);

� quantification of emotional content (Forbes-Riley and Litman, 2004);

� discourse analysis (Polanyi et al., 2004);

� and dialogue tracking (Jain et al., 2004).

It should be immediately obvious that there is much within the field of NLP that

is not and will likely never be relevant to bioinformatics, or at least not within any

realistic timeframe. The subfields of speech and gesture processing can be ignored

wholesale, as can the large bodies of work dealing with multi-agent dialogue systems,

emotional tone, colloquial and ungrammatical utterances, and so on. Machine transla-

tion and other multi-lingual operations may be of interest to non-Anglophone research

groups, but as long as English is the lingua franca of biology this will remain a minor-

ity concern. As time progresses, more sophisticated processes may become relevant

to biomedical NLP research, perhaps including auto-summarization and paraphrasing,

4Citations in this chapter’s topic lists are illustrative examples rather than broad surveys.
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question answering, and educational aids like conversational tutoring and essay eval-

uation, all of which are current topics of research in less technical textual domains.

However, all of these depend on the fundamental linguistic concepts that will be dis-

cussed here, and which are largely embodied by the first two areas listed above: syntax,

referring to the grammatical structure of text, and semantics, referring to its meaning.

One large and important theme within NLP research is information retrieval (IR),

the science that underlies search engines such as Google5 and PubMed6 as well as

more specialized applications (van Rijsbergen, 1979). IR is classically concerned with

the indexing of text and the selection of relevant documents or parts of documents in

response to user queries, which may be in the form of keywords, seed documents or

classification categories. Traditionally IR is largely a mathematical/statistical endeav-

our, supported by the computer science required to manage what are often very large

datasets, and I suspect many practitioners would see it as something different but re-

lated to NLP. Nonetheless, the two fields are often discussed side by side, there is a

healthy cross-fertilization of ideas, and many of the fundamental concepts of NLP had

their origin in IR such as the precision7 and recall8 measures.

Hersh (2005) paints an appealing picture of an idealized knowledge acquisition

process, which distills all literature into possibly relevant literature, then into definitely

relevant literature and finally into structured knowledge. The first two stages are taken

care of by a process labeled “information retrieval” and the last two are covered by

“information extraction, text mining” with some overlap in the middle. IR is a vast

field with decades of published research, and will not be treated in detail in this thesis;

information extraction, on the other hand, is one of the central themes of this thesis and

will be discussed at length below.

In order to understand NLP, some background in linguistic concepts is required,

which will be introduced piecemeal as necessary to ground discussion of each new

theme. Linguistics is not without its controversies and opposing schools of thought,

but to a large extent such matters can be ignored when one’s concern is to provide

pragmatic and computationally-tractable models within which empirical progress can

be made and ultimately solutions can be developed. Volumes have been written in

traditional linguistics about the differences between Government and Binding theory

(GB), Lexical Function Grammar (LFG) and Generalized Phrase-Structure Grammar

(GPSG) (Horrocks, 1997), for example, and even in the somewhat more pragmatic

world of computational linguistics there is a degree of competition between these and

other theoretical frameworks such as Head-driven Phrase Structure Grammar (HPSG),

Lexicalized Tree-Adjoining Grammar (LTAG) and Combinatory Categorial Grammar

(CCG) (Clark and Curran, 2007; Munroe, 2006). However, much ground has been

5http://www.google.com/
6http://www.pubmed.org/
7The fraction of predictions which are correct/relevant.
8The fraction of correct/relevant answers which are predicted.
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gained with computational approaches that avoid too close commitment to one or an-

other of these competing theories. These tend to focus on those things that the the-

ories have in common, such as the hierarchical phrase-structure model for sentences,

rather than on the differences between them (see Section 1.9.1). This degree of theory-

neutrality enables us to avoid getting bogged down too deeply in linguistic formalisms.

A similar shortcut is provided by the fact that some NLP methodologies, such as Link

Grammar (Sleator and Temperley, 1993), explicitly or implicitly employ instrumental

models of how we can assign meaningful metadata to sentences or words computa-

tionally, rather than theories about how humans actually do generate and understand

language (see Section 1.9.2).

1.3 Goals of biological text mining

It is useful to break the umbrella term ‘text mining’ into a few subdisciplines with

distinct but aligned goals. It must be remembered however that the actual NLP tasks

and processes which will be presented later are to a large extent shared between these

research strands. The main desired endpoints of biological text mining include:

� Document search and retrieval applications tailored to the needs of life scientists,

which utilize the available linguistic information and biological data resources in

a ‘smart’ way in order to reduce ambiguity and increase relevance. This is the

domain of information retrieval as mentioned above. (Hersh and Bhupatiraju,

2003)

� Information extraction (IE) systems which can analyse unstructured text and pick

out relevant facts to be stored in a database and queried. The nature of these facts

depends on the particular problem or application, but in bioinformatics they will

typically be related to biomolecular events involving genes and proteins. This

thesis is concerned primarily with information extraction. (Nédellec, 2005)

� Better integration of textual data sources and non-textual databases, so that ev-

erything that is known about (for example) a gene of interest can be accessed and

cross-referenced in a uniform manner, despite ambiguity and variation in nomen-

clature. This is of particular importance in commercial organizations where pro-

prietary data must be integrated with data imported from the public domain.

(Smith and Cleary, 2003)

In addition to these primary goals, there are several other areas of text mining re-

search which may lead to useful applications in bioinformatics in the medium term,

and have been under development for some years in a medical informatics context, but

which are not yet undergoing intensive study by the biological text mining community.

These include:
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� Knowledge discovery methodologies by which deeply-buried trends and pat-

terns, or new hypotheses, conclusions or inferences can be arrived at by the

analysis of multiple textual sources. Such systems must of course rely on IE

or IR techniques (or both) in order to perform the data-gathering prior to analy-

sis. (Weeber et al., 2003)

� Automatic summarization methods for ‘digesting’ a document—or a set of docu-

ments on the same topic—into a shorter synopsis. This involves both the analysis

and synthesis of language. (Elhadad, 2006)

� Question answering systems, where documents, parts of documents or individual

facts are retrieved in answer to queries which are themselves entered by the user

as written questions. These are the text mining equivalent of natural language

query interfaces for conventional databases. (Niu et al., 2003)

� Ontology induction processes, where a classification schema for entities of inter-

est, including relationships between the classes in the schema (is-a, part-of etc.),

is constructed and populated automatically. This can be thought of as a specific

kind of IE. (Kawasaki et al., 2003)

Biological NLP research began in earnest in the early 1990s (Futrelle et al., 1991;

Baclawski et al., 1993) although some of its foundations were laid as far back as 1982

(Futrelle and Smith, 1982), and it draws on related work from the field of medical

informatics which stretches back at least four decades (Baruch, 1965). The linguis-

tic analysis of biological text, independent from (but influential on) its computational

processing, likewise has a long history (Harris, 2002; Gopnik, 1972). IR (Hersh and

Greenes, 1990) and knowledge discovery (Swanson, 1986) in biomedicine were orig-

inally somewhat distinct from NLP as few linguistic techniques were used in these

endeavours, but in recent years the fields have come together such that it is common to

see ideas from all of these originally distinct disciplines discussed at the same events

and even in the same papers.

1.4 NLP strategies for bioinformatics

Biology and medicine—the two domains are often conflated (Pustejovsky et al., 2002)

although they have been shown to have qualitatively (Friedman et al., 2002) and quan-

titatively (Bodenreider and Pakhomov, 2003) different linguistic properties—pose in-

teresting problems in NLP. There is a clear demand for NLP research and develop-

ment in the life sciences; companies such as AstraZeneca (Hayes, 2004) and Novartis

(Vachon, 2004) are investing increasingly in text mining projects and products, and

the number of MEDLINE entries concerning genomic NLP seems to have grown ex-

ponentially from 1999 to the end of 2005 (although the rate appears to be slowing
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slightly—see Figure 1.1). However, the current state of the art in mainstream English

NLP has been facilitated by the availability of large, hand-annotated textual resources,

such as the million-word Penn Treebank (PTB)9 collection of Wall Street Journal ar-

ticles and their associated phrase-structure trees (Marcus et al., 1994), against which

machine-learning algorithms can be trained. These are currently small and scarce in the

biomedical genre(s), due to a skills bottleneck: a postgraduate linguist working alone

can accurately annotate newspaper English with word categories, phrase structures,

named entities and semantic relations, but to perform the same tasks on a biological

corpus requires the input of a trained biologist too (Tateisi et al., 2004). This is due

to the high proportion of unfamiliar technical terms, non-standard usages and domain-

specific phrases with complex internal structure.

Faced with this stumbling block, there have been four broad classes of response

from the bioinformatics NLP community, which are discussed in brief below.

1.4.1 Domain-specific annotated corpora development

This is the approach taken by, for example, the GENIA project 10 at the University of

Tokyo (Tateisi et al., 2005), the Mining the Bibliome project 11 (sometimes PennBioIE

or just BioIE) at the University of Pennsylvania (Bies et al., 2005), and more recently

the ProSpecTome project12 at Birkbeck College (Kabiljo et al., 2007). It is labour-

intensive but rigorous, and produces gold-standard benchmarks against which new and

existing NLP algorithms can be trained and tested. In addition, several algorithm-

research projects have produced their own development corpora, some of which have

been made available to the public (Smith et al., 2004; Temkin and Gilder, 2003); these

are usually smaller and more closely-tailored than those which result from dedicated

corpus annotation projects. However, annotation project teams tend to codify their

annotation protocols and rules more explicitly (Tateisi and Tsujii, 2004; Kulick et al.,

2004), which is useful for third-party investigators.

1.4.2 Untrained (non-corpus-based) methods

Not all NLP algorithms are based on machine-learning principles. Many rely on hand-

crafted heuristics or grammars (Hull, 1996; Sleator and Temperley, 1993) which reflect

assumptions about language that may or may not remain true when applied to a new

domain such as biology. Given that such tools are only tied to any particular genre in

a somewhat subjective way, it is not unreasonable to apply them to biomedical corpora

without major alteration (Yakushiji et al., 2001). Alternatively, they may be designed

9http://www.cis.upenn.edu/˜treebank/home.html
10http://www-tsujii.is.s.u-tokyo.ac.jp/˜genia/
11http://bioie.ldc.upenn.edu/
12http://textmining.cryst.bbk.ac.uk/ProSpecTome/
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Figure 1.1: Number of MEDLINE entries matching strings natural language processing or

text mining, as well as gene or protein, compared to an exponential curve (after Verspoor

et al., 2006). Although the growth rate in MEDLINE looks to be slowing, there are many

other refereed publications that are not indexed by MEDLINE (such as NLP and infor-

matics journals and conference proceedings) which frequently publish material on topics

relating to biomedical text mining.

or built with biomedical applications in mind, according to more (Friedman et al.,

2001) or less (Blaschke et al., 1999) linguistically-oriented principles. However, for-

mal quantitative evaluation can prove difficult in such cases. While machine learning

systems can automatically obtain test data by holding out a portion of the training data,

deterministic methods which lack any manually-annotated development data at all are

sometimes published with coverage figures but no actual quantification of accuracy

(Svolovits, 2003), or with a small amount of manually-marked output functioning as

worked examples (Rzhetsky et al., 2004).
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1.4.3 Utilization of tools trained on conventional English

Some of the most successful algorithms in general-English NLP are statistical mod-

els which have been trained on the large corpora of annotated text mentioned above

(Collins, 1999; Charniak, 1999). Although the development of domain-specific corpora

has not yet progressed far enough to allow such models to be retrained from scratch

on biological English, it is nevertheless important to establish how well or badly these

methods perform on such texts. We may be able to correct for the specific mistakes

they make on unfamiliar kinds of writing, by using additional sources of background

knowledge about biology (Rindflesch et al., 2000), or by treating biomedical texts as if

they are written in a formal sublanguage which is analytically distinct from colloquial

English (Harris, 2002). Indeed the performance dropoff of certain tools or algorithms

may be small enough that it can be safely disregarded for practical purposes. Without

rigorous evaluation on a case-by-case basis, there is no way to tell.

1.4.4 Unsupervised machine learning methods

A specialized area of computational linguistics that has yet to be widely explored in a

biomedical context relates to the induction of stochastic models from unannotated cor-

pora. This approach is more feasible in some areas (particularly automatic grammar

acquisition, and probabilistic modeling for speech processing) than others (Jurafsky

and Martin, 2000). So far its success has proved to be limited, as it is highly sensitive

to both statistical and linguistic subtleties, and can lead to rules which appear statisti-

cally sound yet have no linguistic basis (de Marcken, 1995). For example, prepositions

follow nouns very frequently in English not because noun-preposition is some mean-

ingful linguistic unit, but because prepositional phrases (which start with prepositions)

often follow the noun phrases they modify (which end with nouns). We can think of

any number of phrases like the man on the bridge, the man in the car and so on, all

of which contain the noun man followed by a preposition, but constructions like man

in are not constituents (see Section 1.9.1) in their own right. Rather, the prepositional

phrase starting with the preposition is the grammatical unit which can be substituted

and moved around atomically, as in the man in the car on the bridge.

Given the large amount of biomedical text available and the labour-intensive na-

ture of the annotation process, however, developments in unsupervised techniques that

overcome these problems may prove important in a bioinformatics context.

1.5 Tokenization

Perhaps the most basic task in the processing of written language is the splitting of a

string of text into a list of words and other symbols. This may sound straightforward

at first, at least for Western languages with visible word separators, but can lead to
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the introduction of serious errors that propagate throughout the (conceptual or actual)

downstream processing pipeline if performed naı̈vely. The potential complexities in the

tokenization process fall into two major categories: those that apply across all domains,

and those that are more likely to be found in biomedical corpora, as well as in certain

other scientific domains with a large technical vocabulary.

1.5.1 Domain-independent tokenization issues

Most of these problems arise from the use of punctuation to conjoin words, and there-

fore are language-specific, but sometimes dependent on an individual author’s or edi-

tor’s style. Common examples in English include the hyphenation of adverb-participle

(tightly-wound) or noun-adjective (language-specific) pairs, and the coordination of

words in the same category using slashes or hyphens (his/her, adverb-participle). Per-

haps most human readers would intuitively see these constructions as consisting of two

word tokens joined by a punctuation token, but dictionaries contain many superficially-

similar examples that are nonetheless listed as a single lexical entry. This seems to

reflect frequent usage, and can occur whether or not the string has idiomatic meaning

in addition to, or instead of, its literal interpretation—as in newly-wed vs. side-lined

(American Heritage Dictionaries, 2000). On the other hand, one might suppose that hu-

mans would typically see verb contractions and genitives (I’m, would’ve or Andrew’s)

as single words; word count routines such as the GNU wc command tend to treat them

as such, at least. The influential PTB tokenization algorithm13 however splits such

cases into two tokens—and yet keeps all hyphenated constructions together. We must

then treat such decisions as (at least to a certain degree) matters of convention; as a re-

sult, what matters most in these cases is consistency of actual and expected behaviour

between NLP components that are working together, rather than ‘correctness’ per se.

Another class of punctuation issues can be identified as genuine errors rather than dif-

ferences of convention: those that occur when a hyphen is used to break a word at the

end of a line in a formatted file (e.g. a PDF) and is not removed correctly on conversion

to plain text for processing (see Section 5.1.3).

1.5.2 Biomedical tokenization issues

The use of chemical and biological names with embedded punctuation is a particu-

lar source of ambiguity, although in these cases it is clearer that certain tokenizations

are correct or incorrect rather than simply matters of convention. Naı̈ve tokenization

schemes designed to cope well with newspaper English will not necessarily perform

well on such data. For example, the assumption that an alphanumeric string ending

with a single quote is two tokens, the first a word and the second a punctuation symbol

13http://www.cis.upenn.edu/˜treebank/tokenizer.sed
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indicating the end of a quotation, will cause references to the ends of DNA (5’ and

3’) to be misinterpreted. Similarly, a decision to split on slashes and hyphens and con-

sider each resulting substring as a separate token will break the names or symbols of

many genes, proteins and chemical compounds (Porcupine-A, TbNT2/927, N(2),N(2)-

dimethylguanosine). Conversely however, treating hyphens as non-splitting charac-

ters may obscure the specific biological meaning of certain words in constructions

like secretase-mediated and sigma(F)-sigma(E)-sigma(G)-sigma(K) . Clearly there is

a complex relationship between these issues and those involved in named entity recog-

nition (see Section 1.8).

1.5.3 Tokenization methods

Despite these complexities, this task is often approached in a fairly ad-hoc way, using

simple pattern-matching with hand-crafted rules for common exceptions, and rarely

evaluated rigorously as a task in its own right. Also, many higher-level NLP tools per-

form their own tokenization without making explicit the principles and assumptions

that have been employed. It is not uncommon in bioinformatics to simply apply the

Penn rules without modification (Smith et al., 2004) or with post-processing to adjust

for certain biological and chemical constructions (Tateisi and Tsujii, 2004). An inter-

esting alternative perspective is presented by Futrelle et al. (2003), whose principle of

‘Extreme Tokenization’ states that any runs of alphanumeric characters and any other

single symbols should be broken off into new tokens, and that the tokenizer should not

be responsible for making complex decisions that might run contrary to the require-

ments of a module further down the pipeline. However the implicit corollary of this is

that later modules must be designed with this in mind, since many English words and

biological terms (it’s, NF-kappa-B) will be split into multiple tokens by this method.

Experimentation will tell whether this is a sensible way to deal with tokenization am-

biguity.

1.6 Sentence boundary detection

Like tokenization, sentence splitting appears simple at first glance but reveals hidden

complexities on further examination. Again, mistakes made here can cause error cas-

cades that may not be easily detectable at a later stage of processing. The demarcation

of text into sentences is a required step for further syntactic processing and for almost

all forms of IE, although the reasons for doing so may differ. It has been shown, for

example, that when simply looking for co-occurrences of entity names in order to pre-

dict putative connections from the text, operating at the level of individual sentences

gives the best trade-off between precision and recall scores (Ding et al., 2002). At the

other end of the scale, analysis of text using a sophisticated grammatical parser will
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be difficult if not totally impossible if the boundaries between the sentences are not

accurately determined, as the parser will be hampered in its attempts to fit syntactic

tree or graph structures to the sequences of words. Indeed, most parsers bypass the

thorny problem of boundary detection by requiring text that has already been split into

sentences (Collins, 1999; Charniak, 1999, for example). As with tokenization, general

English sentence boundary detection issues are distinguishable from those specific to

biomedical English.

1.6.1 Domain-independent sentence demarcation issues

The intuitive English formula—look for a full stop (or exclamation/question mark)

followed by whitespace and then a capital letter—must be adjusted to cope with abbre-

viations such as Dr. or etc.. Initials are another source of problems—the string Mr. A.

B. Clegg for example contains three points where a false boundary might be inserted.

Further confusion arises when a string like etc. is found at the end of the sentence, and

the full stop that indicates abbreviation is conflated with the end-of-sentence marker.

This means that a more sophisticated approach must be taken than simply flagging etc.

as a non-boundary string (Walker et al., 2001).

1.6.2 Biomedical sentence demarcation issues

The problems described above boil down to the occurrence of false-positive or false-

negative ends of sentences. However, biological text provides a whole different source

of error—false-negative beginnings of sentences. These can occur when for example

a gene name or symbol, spelt with a lowercase initial (e.g. sonic hedgehog or shh), is

found at the beginning of a sentence.

1.6.3 Boundary detection methods

Despite the importance of the sentence as a unit of meaningful information, sentence

boundary detection in bioinformatics is still in a fairly primitive state. While main-

stream computational linguists have developed sophisticated classifiers based on sin-

gle (Reynar and Ratnaparkhi, 1997) or multiple (Hillard et al., 2004) machine-learning

principles, particularly in the speech-recognition field where punctuation and orthog-

raphy are not available as clues, biomedical NLP research has largely relied on deter-

ministic, heuristic preprocessing filters using techniques such as regular expressions

(Smith et al., 2004). Simple heuristic models have achieved accuracy as high as 99%

in informal tests (Futrelle et al., 2003), so it is not clear whether developing highly

sophisticated solutions would be a good direction of research effort, although a study

of a clinical IR system found that sentence boundary mistakes were responsible for 6%

of errors in a 1,377-document corpus (Averbuch et al., 2004). A simple test of current
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systems’ accuracy against the full 2,000-abstract GENIA corpus would help determine

whether much additional work is necessary.

1.7 Part-of-speech tagging

Part-of-speech (POS) or word category tagging involves assigning each word in the

tokenised input stream to one of a set of pre-defined categories such as ‘adjective’,

‘common noun, plural’ or ‘preposition or subordinating conjunction’. The set of tags

used (and thus the set of categories available) is referred to as a tagset. There are

various tagsets in common use, with the de facto standard perhaps being that defined

by the PTB (Santorini, 1990). The fact that the various tagsets available do not exactly

map onto one another indicates subtle differences in their underlying conceptions of

English; for example, the MedPost tagset (Smith et al., 2004) distinguishes between

normal lexical verbs and the special verbs be, do and have, whereas the PTB tagset

considers all of these to be just verbs.

POS tagging is rarely an end in itself, unless one is performing linguistic corpus

analysis for its own sake, but it is a pre-requisite for accurate syntactic processing. Al-

though some parsers (see Section 1.9) perform POS tagging (and indeed tokenization)

themselves (Charniak, 1999), others require pre-tagged text (Collins, 1999), and a third

kind only consider word categories to be emergent clusters of similarly-behaved words

(Sleator and Temperley, 1993); in any case the two tasks are conceptually distinct so

will be treated individually here. Other tasks that can make use of POS information

include named entity recognition (see Section 1.8) and word-sense disambiguation for

information retrieval (Cutting et al., 1992).

1.7.1 Problems in part-of-speech assignment

Several sources of information must be drawn on in order to assign a POS tag with any

degree of certainty, and in many cases there will still be ambiguous results that must

be guessed at from the available context. Some words can be assigned to a syntactic

category by matching against a dictionary, but many English words can belong to mul-

tiple categories (flies, like—see Section 1.9) meaning contextual information (e.g. the

previous and next words) must be brought into play. However, there will always be

a fraction of cases that even human annotators will disagree on or be unable to make

a judgement on; the sentence the ambassador was entertaining last night for example

could mean that said dignitary was personally amusing (entertaining = adjective) or

had guests (entertaining = verb). Humans can only judge such cases intuitively based

on extra-sentential semantic information, and not at all given just the sentence in iso-

lation; this puts an upper bound on the performance of machines at the same task.

Inter-annotator agreement can be measured using the kappa statistic (Carletta, 1996)
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which quantifies this uncertainty. Unknown words present another source of error, par-

ticularly in bioinformatics and other technical domains, although many words contain

morphological clues that can help identify their roles—the suffix -tion being found

almost exclusively on nouns for example.

1.7.2 Part-of-speech tagging methods

Traditionally, mainstream English POS taggers fall into two camps, those that use de-

terministic processes based on morphological analysis and lexical lookup along with

hand-crafted disambiguation rules (Voutilainen, 1995), and those that use stochastic

models trained on annotated text (Ratnaparkhi, 1996). A hybrid error-driven approach

learns explicit classification rules from text (Brill, 1995). Recently, highly-optimized

taggers trained on hand-annotated MEDLINE abstracts have begun to appear, using

hidden Markov models (HMMs) (Smith et al., 2004) or maximum entropy methods. 14

These can expect accuracies of around 97-98% on biomedical text.

1.8 Named entity recognition

Named entity recognition involves the tagging of biomedically important names in text,

such as those for genes, proteins, RNAs, small molecules, tissue or cell types, diseases,

organisms and so on. This problem has been particularly well-studied in the past few

years, since it is hard to see how one could extract any sort of useful meaning from

this kind of text without accurately determining what objects or substances are being

described. The equivalent entities in news articles are things like companies, places,

people and products—anything that would be represented by a proper noun, more or

less—but there is an added dimension to the problem in bioinformatics that relates to

interoperability and system integration. It would be acceptable in a newspaper NLP

system to identify IBM and Lotus as named entities, for example, and thus flag the

event IBM bought Lotus as a newsworthy factoid, allowing this nugget of information

to be reported directly as-is or used in summary generation or other further processing.

However it is less useful to recognize Amias and ACE as named entities in the relation-

ship Amias inhibits ACE, without also categorizing Amias as a drug and ACE as a pro-

tein, and relating both of those names—along with the various other names by which

those substances can be identified (e.g. candesartan cilexetil , angiotensin-converting

enzyme)—to entries in a database, an ontology or other structured data repository. In

short, named entity recognition in bioinformatics involves detection, disambiguation

and classification, although not all research projects tackle all three steps.

A naı̈ve approach to this task would be to perform simple string matching between

the text and a canonical database of entities, but there are various reasons why such a

14http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/postagger/

28



technique will perform very poorly, as discussed below. Nonetheless, many methods

require a dictionary of some kind from which rules can be generalized. Terminological

resources such as the Gene Ontology (GO) (Ashburner et al., 2000) and the Unified

Medical Language System (UMLS) (McCray et al., 2001), as well as other structured

databases such as LocusLink (Pruitt et al., 2000), have proved to be useful sources of

raw lexical data for this purpose. These resources encode a great deal of non-lexical

background facts, such as meronymy (part-whole) and hyponymy (set-superset) rela-

tions, which gives them an enormous amount of potentially useful semantic richness

(see Section 1.10); however, for the purposes of named entity processing they are much

more immediately useful as broad-coverage dictionaries or thesauri of names and syn-

onyms.

1.8.1 Named entity recognition issues

The sheer amount of variation in the naming of biological entities poses immediate

problems, over and above the simple fact that public databases of such entities are pop-

ulated with data drawn from published accounts, and thus will always lag behind the

literature. It is not uncommon for one entity such as a gene or its product to be re-

ferred to by many different names and symbols in the literature and in public databases

(FLICE, MACH and Mch5 are all the same protein), and although there are nomen-

clature guidelines in place, the extent to which these are followed varies with organ-

ism and date of publication (White et al., 2001). Even if near-exhaustive synonym

lists can be compiled from structured data sources, further variation within each name

can occur due to differences in orthographic conventions between different texts or

databases. These include the representation of special characters (�-Spec, alpha-Spec,

&agr;-Spec15), hyphenation and abbreviation (NF-kappaB, NF-kappa-B, NFkB), cap-

italization standards and international spelling differences.

Polysemy and homonymy, where the same term has several different related and

unrelated meanings respectively, are also widespread issues in biology. Polysemy oc-

curs when a name is used to refer to both a gene and its product (Cdk2), or to the

members of a homologous family across several species (Integrase), and also when an

enzyme is named after its biochemical activity (alcohol dehydrogenase). Homonymy is

less systematic; amongst other things it arises from acronym clashes with other biolog-

ical entities and with general scientific or mathematical terms, and imaginative naming

schemes leading to genes being given English words as names (hand, shark , for). Just

as orthographic variation can amplify synonymy, typographic normalization—taking

place when a formatted journal article is converted to plain ASCII text—can amplify

polysemy and homonymy. This occurs when the removal of formatting information

destroys the distinction between italic type for genes and standard type for their pro-

15&agr; is the encoding for � used in MEDLINE.
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teins, as followed by some journals, and renders superscripts, subscripts and normal

text indistinguishable.

1.8.2 Methods in named entity recognition

Many early attempts to improve performance over and above the levels of naı̈ve string

matching concentrated on loosening the match criteria in order to improve recall, while

applying a variety of ad hoc methods in order to mitigate the associated loss of pre-

cision. Jenssen et al. (2001) for example relaxed case sensitivity in some cases, and

allowed for likely family variants, where a name like cyclin E2 would be tagged since

it consisted of a known family identifier followed by a novel variant specifier. Short

gene symbols proved to be a particular source of false positives, so disambiguation

procedures based on context words extracted from the corresponding full-length gene

names were introduced in these cases. One ingenious method of match relaxation

was proposed by Krauthammer et al. (2000), who adapted the algorithm from BLAST

(Altschul et al., 1997) to tag strings sufficiently similar to entries in the dictionary.

Some investigators however dispensed with the dictionary entirely, such as Fukuda

et al. (1998), who manually constructed a set of rules, rather like a grammar, that en-

capsulated the common surface patterns of protein names.

Nowadays there is sufficient training data available in the form of biomedical cor-

pora annotated with named entity information (see Section 1.4.1) for machine learning

solutions to become feasible and in fact de rigeur. The broad idea is that given enough

examples and a well-chosen feature set, an inductive algorithm can be trained to clas-

sify incoming text tokens as belonging, or not belonging, to an entity name. The fea-

tures taken into account often include orthography (e.g. embedded numbers or Greek

letters), common prefixes and suffixes (like -ase for enzymes), POS tags, context words

(adjacent or nearby tokens in the text stream), presence in (or similarity to entries in)

a dictionary and so on. Furthermore, the same algorithm can also learn to distinguish

between different classes of entity (e.g. DNA vs. protein), or a secondary classifier can

be applied to the hits identified by the first. The current ubiquity of the machine learn-

ing paradigm is demonstrated by the the BioNLP/NLPBA 2004 workshop, 16 where it

was adopted by all seven entries in the competitive shared task. Of these, three groups

were based on support vector machines (SVMs) (Park et al., 2004; Lee et al., 2004;

Rössler, 2004), a further two used SVMs alongside hidden Markov models (Zhou and

Su, 2004) or conditional random fields (CRFs) (Song et al., 2004), one entry used just

an HMM (Zhao, 2004), and one used a maximum-entropy Markov model (MEMM)

(Finkel et al., 2004).

16http://www.genisis.ch/˜natlang/JNLPBA04/
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1.8.3 Acronyms and abbreviations

A distinct sub-problem of named entity processing is the handling of acronyms and

other abbreviations, which are much more common in biomedical text (and other tech-

nical genres) than they are in mainstream English. Various approaches have been tried

in order to tackle this problem, some of them as part of general named entity recogniz-

ers (Zhou, 2004), and some (such as those that follow) as projects in their own right;

there is no widely-accepted ‘right way’ to perform this task. Yu et al. (2003) employ an

SVM-based classifier to MEDLINE abstracts, operating under the ‘One Sense Per Dis-

course’ hypothesis which states that one abbreviation will not be used to stand for more

than one different thing in the same abstract, or at least not often enough to become a

significant problem. They report 84% accuracy for their system. Schwartz and Hearst

(2003) on the other hand use a deterministic system based on fitting parenthetical ex-

pressions to their most likely expansions from the same body of text; they report their

results in terms of precision and recall, reporting 96% and 82% respectively. Similar

scores were obtained by Adar (2004), who has also built a dictionary out of the results

of his cluster-based approach and made it available for manual and automatic querying

over the web.

1.8.4 Difficult named entity problems

A serious unaddressed issue in named entity processing is the handling of nested named

entities. Take for example the protein named leukocyte elastase inhibitor—within its

name, the cell type leukocyte and the enzyme elastase are also mentioned. A similar

situation occurs with Grave’s disease in Grave’s disease carrier protein. Names can be

nested several levels deep; this can be taken to ridiculous extremes as in the mitogen-

activated protein kinase kinase kinase (MAPKKK) family, and although it is tempting

to assume that authors would avoid such a cumbersome name in favour of a simpler

synonym, PubMed returns 1510 hits for the exact string kinase kinase kinase at the time

of writing. Early corpora did not even attempt to address the engineering issues raised

by nested entity names, and even now most tools and annotation formats are unable to

represent such phenomena (e.g. Song et al., 2005), although these are being gradually

superseded by more sophisticated markup schemes that can (Kim et al., 2003; Pyysalo

et al., 2007a). Related issues concern coordination (CD2 and CD25 receptors) and

list (Arp2/3) structures which refer to multiple entities, some of which are not actually

substrings of the text sequence referring to them.

There are also issues of semantics to be considered; does the name penicillin-

binding protein 3 contain the name penicillin even if the protein to which it refers

is being discussed in a context unrelated to its affinity for said drug? Or is it analogous

to the central London location Oxford Circus in a mainstream IE setting, which would

not ordinarily be considered to contain a mention of Oxford? Another problem is
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that of actually identifying entities, once candidate names have been tagged—in other

words, grounding names in actual reference database objects. Very few of the systems

currently available even attempt this, even though for many applications a string of

text with no grounding in reality is next to useless as an entity identifier. A further

discussion of this issue, along with an outline solution, can be found in Appendix A.

1.9 Syntax structure analysis

A piece of software designed to transform a sentence or other utterance into a structured

grammatical representation is known as a parser; the process is referred to as parsing.

A parser must encapsulate or be associated with a grammar, that is, a set of rules

specifying which syntactic phenomena can occur in which situations and how these can

combine to produce the text at hand. (It is common in linguistics to see syntactic rules

as defining how well-formed strings in a language can be produced, hence ‘generative

grammar’.) To be of much practical use, a parser must also employ some mechanism

which enables it to select one parse out of several valid alternatives, or to rank a set

of possible parses in order of likelihood. This is because even very simple natural

language phrases and sentences can exhibit a high degree of ambiguity. There are two

broad kinds of ambiguity: lexical category ambiguity, where multiple POS tags are

possible for at least one word, and structural ambiguity, where multiple grammatical

readings are possible even with the same sequence of tags (Jurafsky and Martin, 2000).

The distinction is neatly illustrated by a pair of Groucho Marx puns:

Time flies like an arrow; fruit flies like a banana.17

The humour here arises from the change in category of flies (verb to noun) and like

(adverb to verb) between the two phrases, which in turn forces a whole new phrase

structure to emerge. Ideally, good POS tagging should weed out this kind of confusion

before the parser is brought into play.

One morning I shot an elephant in my pajamas. How he got into my

pajamas I don’t know. (Heerman, 1930)

In this case there is only one grammatical way to assign the words to categories.

The humour instead comes from the multiple valid syntactic structures for the first sen-

tence, specifically, the fact that the prepositional phrase in my pajamas can modify the

subject (I ), the verb (shot) or the object (an elephant). 18 Some mechanisms employed

by parsers to resolve this kind of ambiguity are discussed below.

17This quote has been widely attributed to Groucho Marx but its exact provenance seems to have been
lost.

18Note however that standard phrase-structure formalisms cannot distinguish between the first two cases,
for English sentences where the preposition follows the object.
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Figure 1.2: A simple constituency structure, for the sentence the man saw the dog. The

immediate parent of each word is its POS tag, and the higher nodes are the constituent

labels. The recursive nature of language is made very clear in the nested arrangement of

clauses and phrases.

1.9.1 Constituent parsers

The modern orthodox study of syntax is an uneven battleground between various com-

peting grammatical schools, such as GB, GPSG, LFG and so on, all of which depend to

a greater or lesser degree on the work Noam Chomsky began in the 1950s (Chomsky,

1956; Horrocks, 1997). The theoretical paradigm shared by all of these competitors

conceives of sentences as hierarchical structures composed of clauses, phrases and

subphrases known as constituents. Each constituent has a label, rather like a POS tag,

indicating its grammatical role: sentence, noun phrase, verb phrase, etc., although the

labels used (and the underlying distinctions they represent) can vary between grammars

and between parsers in the same way as the POS tagset can. An example of a simple

constituent parse of the sentence the man saw the dog is given in Figure 1.2; such dia-

grams are known as phrase structure trees, phrase markers, constituent trees or syntax

trees. (A dictionary of the POS tags and constituent labels in the PTB standard, as

used in this figure and all the examples trees in this thesis, is supplied in Appendix C.)

The same structure can also be written linearly as (S (NP (DT the) (NN man))

(VP (VBD saw) (NP (DT the) (NN dog)))). The word that determines the

category of each constituent (e.g. the verb saw in the verb phrase saw the dog) is

known as the head of that constituent, although this is not usually marked in the tree

diagram.

The goal of a constituent parser is clear: to recover this structural information, to a

greater or lesser degree of detail, for each raw or tagged sentence in the input corpus.

Some parsers seek to perform this task in accordance with an explicit grammatical

theory (Kaplan and Maxwell, 1996; Tsuruoka et al., 2004), but the development of

constituent parsers has been very much influenced by the development of syntactically-

annotated corpora, particularly the PTB. This has given rise to the advent of high-
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accuracy, broad-coverage parsers that are concerned less with encapsulating generative

processes and ideas of grammaticality, and more with learning and applying statistical

models that represent the frequency of different patterns of usage in different contexts

within the training corpus. This evidential approach allows these so-called treebank

parsers to disambiguate by comparing likelihoods for each plausible parse of a sentence

based on similarity to training data. This kind of parser is very popular in computational

linguistics research and has begun to be employed in biological NLP tasks too (see

Chapter 2).

The most fundamental requirement of a constituent parser is the grammar itself,

which comprises a set of production rules of the basic form S � NP VP (‘sentence

consists of noun-phrase followed by verb-phrase’), NP � DT NN (‘noun phrase con-

sists of determiner followed by noun’) and so on. These specify all the allowable ways

each type of constituent can break down into parts. Empirical treebank grammars will

consist of all the production rules observed in the training data, although smoothing

functions can allow unseen productions to be given non-zero probability in order to

avoid breaking the parsing process. Each non-terminal, non-POS node in a parse tree

represents the application of one of these rules. A modern treebank grammar will also

contain statistics obtained during the training phase which encode the frequency of oc-

currence of each rule, conditioned on what actual words instantiate the word categories

and heads of phrases on each side of the rule, along with various other features such as

ancestral node labels, nearby POS tags etc. which vary from parser to parser (Jurafsky

and Martin, 2000). Typically, parsing occurs in a bottom-up manner, starting with the

maximum probabilities for single words and proceeding recursively; a dynamic pro-

gramming matrix is thus built up, with each element holding the maximum probability

of a single constituent, while a separate array of back-pointers holds the links between

constituents needed to reconstruct the tree structure. One variant on this procedure

holds multiple derivations in memory and so can return the �-best (most probable)

parses for a given input (Bikel, 2004).

1.9.2 Dependency-style parsers

Set against the mainstream constituency view of grammar are several linguistic theories

and analytical formalisms referred to collectively as dependency grammars. These

set out to capture the connections between words directly, rather than by grouping

them into phrases; this results in a graph representation where each node is a word

and each arc a typed relationship between two words. In the man saw the dog for

instance, man and saw would be related by a dependency reflecting the subject-verb

relationship holding between them, as in Figure 1.3 and Figure 1.4—contrast this with

Figure 1.2 where the path between man and saw is the joint second-longest in the

tree. The principles of dependency grammar were formulated in the 1940s and 50s
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by French linguist Lucien Tesnière, with their roots in European linguistic traditions

going back to the Middle Ages (Schneider, 1998). There is no dominant paradigm

for graph-based annotation of English text, partly because there are no projects on

a comparable scale to the PTB which provides a de facto standard for constituency

annotations. The closest dependency-like corpus in size terms is SUSANNE 19 which is

an order of magnitude smaller (130,000 words compared to over a million). As a result,

there are a broad range of dependency grammars which differ not only on the types and

granularities of the dependencies they use, but also on the rules they use for modeling

certain linguistic phenomena. This means that two ‘correct’ dependency parses of the

same sentence from different parsers can be significantly different in topology (Pyysalo

et al., 2006a). Also, various other graph-based representations of syntax such as Link

Grammar (Sleator and Temperley, 1993) and Word Grammar (Hudson, 1997) are often

discussed alongside dependency grammars even though they have slightly different

features.

As a result of this heterogeneity and lack of gold standards, dependency parsers

can be rather hard to evaluate and compare (Pyysalo et al., 2006a; de Marneffe et al.,

2006). Nonetheless, they have achieved a certain amount of popularity among practi-

cal NLP researchers, mainly due to the simplicity of dependency graphs compared to

constituent trees, and the fact that the semantic structure of a sentence is often more

intuitively apparent from a dependency graph than a syntax tree. Various algorithms

do exist for mapping from constituent trees to dependency graphs (Schneider, 1998;

Briscoe et al., 2002; Pyysalo et al., 2006a), albeit in potentially lossy ways; the group-

ing of words into phrases is abandoned, although this can sometimes be retrieved to a

certain level of detail from the structure of the graph. One way around this problem is

to retain the original tree structure and add dependencies to it as connections between

leaf nodes (de Marneffe et al., 2006). Despite their difference in output, however, some

dependency parsers actually use probabilistic algorithms to learn and predict sentence

structure that are very similar to those employed by classic treebank parsers (Schnei-

der, 2003). Others such as the Link Grammar Parser are entirely rules-based. It must

also be noted that many constituent parsers actually produce dependencies internally

as they parse, as these relationships are an important part of their statistical models

of the training data (Collins, 2003). This information can in some cases be retrieved

and used (Bunescu and Mooney, 2005), but it is not as rich as a proper dependency

grammar—the dependencies have no syntactic (or semantic) typology, and do not nec-

essarily function as meaningful grammatical relations in the same way.

19http://www.grsampson.net/Resources.html
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Figure 1.3: A Link Grammar linkage diagram of the sentence the man saw the dog. The

suffixes after the nouns and verbs indicate their categories. The labels on the links indi-

cate the link types. Links are nominally bidirectional, with no sense of subordination or

government, but are constrained as to what words can go at either end, for example S (and

subtypes like Ss shown here) which connects a verb to its subject. Importantly, a legal

linkage must connect all the words in a sentence, in the original order, without any links

crossing.

1.9.3 Shallow, partial, chunking parsers

Shallow or partial parsing generally refers to the process of grouping words linearly

into ‘chunks’ based on likely phrase boundary positions in the stream of text, rather

than deriving a fully-specified tree or graph reflecting all aspects of phrasal attach-

ment. For example, a shallow parse of the sentence in Figure 1.2, ignoring POS tags,

might read (NP the man) (VP saw) (NP the dog); the information that the dog

is an argument of the verb saw is not represented. The difference is more acute in the

sentence the man saw the dog with the binoculars (see Figure 1.5). A full parser would

make a guess about whether to attach with the binoculars to either saw or the dog—and

ideally would correctly attach it to saw based on lexical co-occurrence data—while a

typical shallow parser would remain uncommitted, simply bracketing it off into one or

two additional chunks at the end of the sentence. In other words, the man saw the dog

with the collar would produce exactly the same chunk pattern.

Furthermore, a common principle of shallow parsing is that the parser should pro-

duce annotations for those parts of a sentence that it can handle (hence ‘partial’), ig-

noring any unparseable fragments, rather than rejecting the whole sentence as ungram-

matical. There is a continuum between the shallowest and the deepest parsers in terms

of richness of output information; some parsers can produce nested phrase annotations

for a limited subset of syntactic phenomena using only surface pattern matching algo-

rithms (Kinyon, 2001). The Link Grammar Parser can be asked to return fully-specified

but unconnected graph structures for only those parts of a sentence which it considers

grammatical, rather than rejecting the whole sentence based on a localized error, giving

it some of the properties of a partial parser.

Shallow parsers are generally based on fast, non-recursive algorithms like finite-
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Figure 1.4: A dependency graph for the sentence the man saw the dog using the Stanford

dependency grammar (de Marneffe et al., 2006). The labels on the dependencies indicate

the dependency types, and the arrows indicate directionality, from the governor (parent)

to the dependent (child). Each node is a word annotated with a POS tag, although the

tags are typically omitted from diagrams. The visual layout of a dependency graph (arc

direction and ordering) is arbitrary, and does not reflect word order, which must be indexed

separately in software. A glossary of the dependency types in the Stanford standard is

supplied in Appendix C.

state machines, as used in regular expressions, sometimes with extensions allowing

them to simulate a certain degree of recursion in limited cases. (A less common deep-

but-partial approach (Temkin and Gilder, 2003) uses a context-free grammar designed

to cover domain-specific content-bearing words and disregard the rest, for a similar

overall effect.) These automata process the text linearly in reading order, applying

language-specific rules that indicate where to insert chunk boundaries—for example,

a determiner signals the start of a noun group in English (as in the relatively regular

word order). The rules can be manually coded or induced from a training corpus,

depending on whether a deterministic or stochastic model is in use, and can operate

at the grammatical (POS tag) or lexical (word) levels (Li and Roth, 2001). In practice

the most useful clues to sentence structure often come from closed-class words such as

determiners (e.g. a, some), prepositions (e.g. of , in) and pronouns (e.g. they, its). The

relatively regular word order in English is an advantage when processing text in this

manner.

Shallow parsers are popular in natural language engineering projects such as task-

oriented IE, partly due to their computational efficiency, and also because they can be

easily tailored to particular tasks, and combined with each other and with different NLP

techniques in a reasonably modular way. Indeed, Yakushiji et al. (2001) have used one

to increase the coverage of a full parser and reduce the ambiguity in its output. Shal-

low parsers will never be able to process as wide a range of syntactic constructions as

full parsers, due to the context-free and context-sensitive features of natural language

(Jurafsky and Martin, 2000), and cannot represent as richly the phrasal relationships
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Figure 1.5: An example of ambiguous prepositional attachment—does with the binoculars

relate to the man’s act of seeing, or the dog?
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holding between a sentence’s constituents, as discussed above. However, advocates of

shallow parsing often take the opinion that there is sufficient information in the output

of a good shallow parser for semantic interpretation to proceed with a reasonable degree

of accuracy. Leroy et al. (2003) even argue that within a scientifically-rigorous domain

such as biology, underspecification of phenomena like prepositional phrase attachment

will be less problematic than in general English, because authors construct their sen-

tences with a view to minimizing the potential ambiguity in the message. Whether this

ideal really does influence the syntactic structure of biological language though is not

evident a priori.

1.9.4 Syntactic function tagging

There is one potentially useful aspect of syntax that leads naturally into semantics and

yet has been relatively poorly-explored by parser researchers. The Penn and GENIA

treebanks are annotated with function tags relating to certain constituents’ grammatical

(case) roles, phrasal subcategories and other information above and beyond simple

constituent labels, some of which could assist in the correct extraction of meaning.

For example, in the man saw the dog, the man and the dog are both noun phrases

(NP), but the man will be marked NP-SBJ to indicate that it is the subject of the

verb of the verb phrase following it. If the sentence is rephrased in the passive voice,

as the dog was seen by the man, the dog is given the NP-SBJ label as it is now

the subject of the verb, in a grammatical sense. However, the logical subject of the

predicate communicated by the verb is the man, as it is the man who is doing the seeing;

therefore the man is labeled NP-LGS. However, treebank parsers ignore these function

tags when training and thus cannot use them when labeling unseen text. Fortunately

there are algorithms that can post-process parser output and recreate them with a good

degree of accuracy (Blaheta and Charniak, 2000).

Dependency-style parsers tend to treat syntactic functions in a slightly different

way, meaning that although some of these aspects of grammar are taken into account,

this does not happen consistently between different formalisms. The Link parser’s link

labels for example pick out subject-verb (and indeed object-verb) relationships as a

property of the dependency, but do not identify logical subjects in passive statements;

the Stanford dependency grammar on the other hand does make this distinction. The

Enju parser (Tsuruoka et al., 2004) embodies a rather different view, treating the re-

lationship between a passive verb and its logical subject as a semantic dependency

indistinguishable from that which holds between an active verb and its subject (see

Section 1.10.1).
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1.10 Semantic interpretation

The assignment of syntactic structure to free text is not in itself a particularly rewarding

task unless some meaning is then ascribed to this structure. Intuitively, part of the pro-

cess of understanding language is the linking of references in text with their referents in

the real world, which in NLP corresponds to the processes of named entity recognition

and identification, and disambiguation (but see also Section 1.10.3). This is only the

tip of the conceptual iceberg, however, although there are plenty of IE systems where

the sum total of the information extracted about any given referent is that it happens

to be mentioned in the vicinity of a particular set of other referents (Jenssen et al.,

2001; Ding et al., 2002). While this can provide a useful, high-recall overview of a

lot of different entities at once, it is a necessarily coarse and haphazard way to analyse

text which suffers from low precision—due in part to identical treatment of positive,

negative and non-committal statements—and which furthermore is not especially in-

structive or enlightening, from a computational, linguistic or philosophical perspective.

The essential purpose of any semantic interpretation strategy is to transform text

into a formal representation, generally expressed as some form of data structure or

logical notation, which can then be computationally queried, merged, summarized or

otherwise manipulated according to requirements in ways that free text cannot. Even

given a single syntactic reading of text, there are potentially several competing semantic

interpretations that can arise due to such factors as multiple word senses; to take a trivial

example, our likely interpretation of the statement

One morning I shot an elephant in my pajamas. How he got into my

pajamas I don’t know.

will be different depending on whether it is delivered by Groucho holding a shotgun

or a camera. Jurafsky and Martin (2000) argue that the selection of the most likely

interpretation is not the job of the semantic analysis module per se, although this is

a departure from the prevailing trend in computational linguistics for each processing

module to treat ambiguity as an internally-solvable problem.

The scope of the problem of ambiguity is demonstrated by Leech (1974). In ad-

dition to the conceptual meaning of an utterance—the set of symbols, properties and

relationships that it logically encodes—he identifies several different kinds of associa-

tive meaning, that is, the subtle connotations and overtones carried by the utterance that

reflect such things as the beliefs or emotions of the speaker or writer, the social con-

text within which the utterance has been made, the complex network of associations

communicated by the choice of one word over another synonym or near-synonym, and

so on. Consider by way of illustration the two statements fruit flies like bananas and

D. melanogaster are drawn to members of the genus Musa, which have roughly the

same conceptual meaning. However, the style and vocabulary of the latter sentence
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lend it an air of scholarly authority, whilst avoiding the anthropomorphic connotations

of aesthetic preference that the verb like carries in the former. In addition, the the-

matic meaning of an utterance refers to the information implied by word and phrase

ordering and other mechanisms for changing emphasis. Fortunately, in a domain like

biology, one can justifiably consider the conceptual meaning of sentences to be of ex-

clusive interest. While subtler shades of meaning are undoubtedly present in scientific

texts, particularly in the employment of rhetorical machinery and the establishment of

academic credentials in the first place, these are little more than semantic sugar.

1.10.1 Predicate-argument structure

Without getting bogged down in the formalisms of predicate logic, the general goal of

predicate-argument analysis is to transform declarative statements like aspirin inhibits

IL-4 into a logical representation like inhibit(aspirin, IL-4), where inhibit

is a known predicate with an ordered list of arguments—ordered in the sense that

inhibit(IL-4, aspirin) would be taken to mean something different. There are

various other ways to represent such relationships, such as frames (Yakushiji et al.,

2001), templates (Gaizauskas et al., 2003) or labeled graphs (Fiszman et al., 2004),

but these differences are largely superficial. From a linguistic point of view, such a

representation is a simplification of the sentence as it does not record, for example, the

tense difference between inhibits and inhibited , although this is probably not impor-

tant for most applications in bioinformatics. At first glance this process might seem

like nothing more than the identification of the subject and direct object of the verb in-

hibit , but one would hope that the passive-voiced statement IL-4 is inhibited by aspirin

would result in the same predicate-argument representation. One can imagine yet more

complex ways of phrasing the statement that would (or should) nevertheless lead to the

same results, such as nominalization (see below).

An additional level of complexity becomes apparent if one allows that the argu-

ments of some predicates can in fact be other predicate-argument tuples (Friedman

et al., 2001; Pyysalo et al., 2007a). For example, the statement adrenaline inhibits

macrophage nitric oxide production might be best represented by the nested predi-

cate inhibit(adrenaline, produce(macrophage, nitric oxide)). This exam-

ple also illustrates the problem of nominalization. Macrophage nitric oxide production

is not a verb phrase with a subject and an object, but a compound noun phrase, syntacti-

cally very different from the statement macrophages produce nitric oxide. Pustejovsky

et al. (2002) point out that even some actual entity names (Ron receptor) implicitly

encode relationships, meaning that protocols where names of entities are treated as

atomic chunks (Yakushiji et al., 2001) will lose a certain amount of information. An-

other interesting point brought up by the same authors is that partial relationships—e.g.

inhibit(X, IL-4) where X is an entity whose identity has not been successfully
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determined—may still be of value. The fact that an inhibitor of IL-4 exists might be of

interest to the investigator and might trigger a manual inspection to discover what the

missing argument should represent.

In order to facilitate the mapping from syntactic structure to semantic represen-

tation, a standard, semi-formal definition for each predicate must be available. The

details of the scope and notation of these definitions (often known as frames) vary

from project to project, but they would typically record such things as the arity of the

predicate (the number of arguments), the role of each argument and whether each ar-

gument is optional or required—although another way to express this variation is by

defining alternative usages for each predicate with different arities. Arguments can in-

clude generic roles such as agent, location or temporal-modifier as well as

predicate-specific roles such as entity-undergoing-mutation (Wattarujeekrit

et al., 2004). These definitions are constructed in a manual or semi-automated way

(Pustejovsky et al., 2002), although automatic induction from statistical co-occurrence

data (Hatzivassiloglou and Weng, 2002) or parser output (Yakushiji et al., 2004) is a

current area of research. Another interesting application of inductive learning is in the

development of the actual translation rules that map between the syntactic and semantic

levels. Although deterministic algorithms are the rule in bioinformatics, due to the lack

of semantically-annotated training data, the availability of such corpora in mainstream

English makes such methods more feasible (Gildea and Hockienmaier, 2003). It must

be noted, however, that biological IE research projects often concentrate on a small

number of different predicates or even just one (Pustejovsky et al., 2002), or collapse

many related predicates into a single class (see Chapter 4).

1.10.2 Alternative representations

Predicate-argument models are sometimes referred to as ‘shallow’ semantics, partic-

ularly in cases where each predicate’s arguments are labeled with generic rather than

predicate-specific roles, and when the entities that they are filled with are represented

simply by phrases or names rather than more deeply-specified clusters of semantic

properties. While this general approach provides a useful and perhaps necessary base

level of semantic structure, it is important to be aware that there are other, deeper

frameworks within which semantic processing can occur.

The simple predicate-based analysis discussed above is only capable of capturing

the meaning of declarative statements in their entirety—whole sentences or clauses—

along with statements that have been bound into noun phrases by nominalization, as-

suming a sophisticated enough analyser is in use. Lexical semantics, by contrast, is

concerned with meaning down to the level of words, and sometimes to individual

stems, suffixes and prefixes (Jurafsky and Martin, 2000). The idea of word-sense is

a lexical semantic notion, and although much of the effort of word-sense disambigua-
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tion in biomedicine is (or should be) applied in named entity classification, there are

other technical terms that suffer from polysemy too—such as clone (DNA vs. organ-

ism) or species (taxonomy vs. chemistry). Conversely, failing to recognize when two

words are synonymous, or when one subsumes the other, can lead to information loss.

The inclusion of such relations makes a lexicon begin to resemble an ontology.

Ontologies are a familiar concept to most bioinformatics and medical informatics

specialists, and indeed many biologists, due to the success of GO and UMLS, the Open

Biological Ontologies (OBO) initiative20 and various other projects that have followed

in their wake. Such resources, designed with practical considerations in mind, embody

fairly pragmatic approaches to the organization of knowledge compared to the lan-

guages developed by computer scientists (Bechhofer et al., 2001) and the formalisms

employed by philosophers (Smith, 2003). Indeed, it is interesting to note that although

GO calls itself an ontology, it was originally designed as a ‘controlled vocabulary’, and

that the ontological component of the UMLS is small and sparse compared to its lexical

components. While these resources are all manually curated, an active field of research

in NLP is the automatic extraction of ontological knowledge from text by detecting

syntactic patterns characteristic of hyponymy, meronymy and so on. This approach

has been applied with some success in biology already (Kawasaki et al., 2003).

1.10.3 Coreference resolution

Named entity identification is a process of reference resolution, that is, a mapping from

explicit linguistic entities to the extralinguistic entities to which they refer. Another

crucial aspect of semantic interpretation, however, is coreference resolution, that is, the

process of determining which linguistic entities (noun and pronoun phrases) refer to

the same things—a process which can cross sentence as well as phrase barriers, and

which must incorporate a certain degree of background knowledge codified in one of

the lexical or ontological manners described above. There are several scenarios that

must be considered here. One is the situation where a pronoun (mostly it and they and

their variants, in biology) is used to stand for an entity already named, or in some cases,

about to be named. Before such references can be resolved, it must first be determined

whether the pronoun really is being used in a referential sense or simply as a rhetorical

device (Litrán et al., 2004), as in constructions like it must first be determined. . .

Beyond simple pronouns, however, it is very common for a new noun phrase to be

used in place of a previously-introduced entity, or sometimes more than one entity. This

phenomenon is illustrated by such phrases as the substrate, this gene, both enzymes or

each protein, all of which would need to be interpreted with reference to other noun

phrases in the same sentence or elsewhere. One way to increase the reliability of this

process has been to incorporate background knowledge from an ontological or lexi-

20http://obo.sourceforge.net/
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cal data source such as UMLS in order to filter out unlikely correspondences (Castaño

et al., 2002; Lin and Liang, 2004). An annotated test corpus consisting of 32 MED-

LINE abstracts has been released by the Medstract21 project, although given the short,

restricted nature of abstracts, it seems intuitively likely that coreference resolution will

be a harder task over full-text documents.

1.11 Concluding remarks

Given the breadth of current research in NLP, one must be judicious in choosing an

avenue of investigation that is tractable with current resources and that pays dividends

in terms of practical applications, and yet which can be easily extended and integrated

with other work in related areas. From the point of view of a single investigator, it

is also important to avoid embarking on projects which require unfeasibly large data

preparation commitments; corpus development is an area which is best left to teams

of researchers, and—at least at the more abstract levels of syntactic and semantic

annotation—preferably those with both linguistic and biological skills.

Taking these criteria into account, information extraction is an eminently attractive

topic. It is already well established as a research theme with a set of broad yet fairly

clear and widely-applicable goals: the identification of the relationships, interactions

or events that take place between a set of biological entities of interest described in

a corpus of text. At the same time, despite the growing volume of work in this area,

there is plenty of relevant linguistic research relating to the processing of syntax and

semantics which has not yet been brought to bear on the problem. Similarly, while one

can easily isolate the core problems such as relationship or event extraction to focus

on, advances in most of the other topics mentioned above (such as entity identification,

term-sense disambiguation, coreference resolution or ontology management) will be

in a position to improve the practical performance of real-life IE applications. IE is

a somewhat open-ended problem, since although the level of ‘understanding’ required

to extract simple factoids is somewhat superficial, one can easily conceive of systems

capable of capturing more of the nuances of the statements in the text, such as tempo-

ral relations, degrees of belief, quantitative comparisons and so on. Furthermore, data

extracted using IE techniques can provide an important starting point for higher-level

knowledge discovery methodologies. Some thoughts on these ideas are presented in

Chapter 5. Test sets facilitating the benchmarking of IE algorithms in specific biolog-

ical subdomains already exist (e.g. Nédellec, 2005), and most importantly, there is a

real demand for IE and related technologies among biomedical ‘customers’ (I. Dix,

AstraZeneca, pers. comm.).

For these reasons, the following experiments represent some efforts to improve the

21http://medstract.org/
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current state of the art in biological IE with the application of novel methods grounded

in computational-linguistic principles.
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Chapter 2

Parsing biomedical texts

A pre-requisite for a deeper linguistic understanding of biological documents is an

accurate and informative syntactic analysis of the text. This chapter describes a pre-

liminary experiment to investigate the behaviour of several natural language parsers on

an annotated corpus, with the aim of choosing one for use in an information extraction

pipeline. The work presented herein is a refinement of an investigation first presented

in Clegg and Shepherd (2005).

2.1 Motivation

Until fairly recently, most of the information extraction (IE) methods used in bioin-

formatics tasks could be placed into two broad categories: those based on term co-

occurrence, and those based on sequential textual patterns. The earliest methods were

almost entirely co-occurrence based, taking the simple proximity of two or more entity

names in a corpus of text as an indicator of some kind of relationship between them.

The entities under consideration might include genes, proteins, diseases, chromoso-

mal locations etc., depending on the application. The precision/recall tradeoff in such

algorithms can be tuned by narrowing or broadening the window within which proxim-

ity is detected (Ding et al., 2002), or by adjusting a frequency threshold below which

candidate entity pairs will be discarded (Jenssen et al., 2001).

The slightly more sophisticated textual pattern methods use the presence of key-

words such as interaction verbs (regulate, inhibit etc.) as indicators that a genuine re-

lationship is being described, and descriptors of the type of relationship, where several

distinct types are of interest (Pustejovsky et al., 2002). These methods are often aug-

mented with regular expressions describing allowable part-of-speech (POS) sequences

(Domedel-Puig and Wernisch, 2005) or non-recursive phrase boundaries (Saric et al.,

2004) within the text, requiring the input of a POS tagger or shallow (chunking) parser

respectively.
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Recently, however, interest has begin to flourish in techniques that make use of

more complex grammars and syntactic structure. These non-sequential models of text

should in principle be better able to account for long-distance dependencies, complex

phrasing and the great diversity of expression of natural language. An example of a

sentence which might benefit from full syntactic parsing is shown in Figure 2.1 (see

Appendix C for a glossary of the linguistic labels used in this chapter). This is an ex-

ample sentence from the GENIA corpus with a graphical representation of its syntactic

structure as marked by the annotators. An IE algorithm based on co-occurrence at the

sentence or phrase level would incorrectly infer a relationship between c-fos and c-jun,

even though no such relationship is asserted. On the other hand, a method based on

regular expressions would be unlikely to contain a template broad enough to capture

the relationships between PAF and c-fos or c-jun. However, a path can be traced across

the syntax tree between PAF and either c-fos or c-jun via the verb phrase headed by

the verb inducing, but the path between c-fos and c-jun does not cross a verb phrase.

Therefore a suitable syntactic approach might be able to identify the relationships be-

tween PAF and c-fos/c-jun, despite their wide separation in the text, without allowing

a false positive to occur from the close proximity of c-fos and c-jun.

Progress has been made in the analysis of biomedical text using off-the-shelf com-

mercial parsers (Wattarujeekrit et al., 2004), hand-coded grammars dedicated to a spe-

cific aspect of the molecular biology domain (Temkin and Gilder, 2003), or open-

source academic parsers based on dependency- (Ahmed et al., 2005) or constituent-

based (Clegg and Shepherd, 2005) models of language. The research presented in this

last paper and the current chapter was undertaken with the goal of selecting one or

more suitable parsers for biological sentences as a pre-processing stage for semantic

analysis. Constituent-based parsers were chosen on account of the freely available soft-

ware and evaluation data (see below), the richness of their output, the sound theoretical

underpinnings of the probabilistic context-free grammars involved (Jurafsky and Mar-

tin, 2000), and the recent flurry of research applying them to biomedical texts (Rosario

and Hearst, 2004; Shimbo et al., 2004; Xiao et al., 2005; Bies et al., 2005; Lease and

Charniak, 2005).

Context-free grammars (CFGs; Chomsky, 1956) are grammars consisting of pro-

duction rules of the form � � �. � is a non-terminal symbol (e.g. phrase or POS

label) and � is a string consisting of terminal symbols (words) and non-terminals,

to which further production rules can be applied until all of the non-terminals have

been replaced. They are described as ‘generative’ grammars because each one defines

a language which is the set of all possible sentences (strings of terminals) that can

be generated by application of production rules in the grammar (Jurafsky and Martin,

2000). Such grammars model the hierarchical arrangement of constituents (clauses and

phrases) underpinning the selection and ordering of words in a sentence. If recursively

defined, a generative grammar can produce infinitely many distinct sentences.
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Figure 2.1: Syntactic structure of an example sentence from the GENIA corpus (para-

phrased slightly for brevity).
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The derivation of a sentence produced by a generative grammar is the series of

rule applications which are required to produce it, starting from a root node (usually

an S node for ‘sentence’, as in Figure 2.1). Examples of production rules include S

� NP VP (read as ‘sentence produces noun phrase and verb phrase’) or NP � DT

NP (read as ‘noun phrase produces determiner and noun phrase’). Each application

of a production rule is known as a production; in the resulting syntax tree, each non-

terminal node represents a single production, with the node’s label on the left-hand

side of the production rule and the daughter label(s) on the right-hand side. The same

principles underlie the syntax of most computer languages (Aho et al., 1986) and have

been applied to fields as far removed from linguistics as gene prediction in eukaryotic

genomes (Dong and Searls, 1994) and the modeling of RNA secondary structure (Kato

et al., 2003). It must be noted that CFGs are only an approximation to the complexity

of natural language, since they are unable to represent certain phenomena (Jurafsky and

Martin, 2000), but they are used in preference to their richer cousins (context-sensitive

and unrestricted grammars) because of their computational tractability.

For all but the most trivial of sentences, there will be multiple grammatically-valid

parses, even where the correct part of speech (POS) has been assigned to each word—

see Section 1.9, and Figure 2.2 for a biological example. Many parses, like those in

these examples, have clear but contradictory meanings, but perhaps more still will have

no obvious interpretation which makes sense to a human (Charniak, 1997). Modern

broad-coverage, high-accuracy parsers will choose the single most likely parse (or �-

best parses) according to a set of probabilities induced from a hand-annotated training

corpus by machine learning methods. These probabilities attached to production rules

distinguish probabilistic CFGs from deterministic ones; a sentence in a given language

is not ‘grammatical’ or ‘ungrammatical’ but rather has a probability of occurring based

on the frequencies (in the training corpus) of the production rules it uses. Typical

training sets are in the region of several hundred thousand words, an order of magnitude

larger than the amount of data available in the molecular biology domain. The most

widely-used corpus, the PTB, consists largely of newspaper English, which is easy for

linguists to syntactically annotate without any subject-specific background knowledge;

the specialist vocabulary of a domain like molecular biology is a rate-limiting factor in

the annotation process, which makes the adaptation of existing tools without retraining

a more attractive option.

2.1.1 Parser selection

As discussed in Section 1.9, there are various kinds of parsers currently available, in the

broad categories of partial (shallow/chunking) parsers, constituent parsers and depen-

dency parsers. Although partial parsers have been used for biomedical NLP tasks (e.g.

Leroy et al., 2003), they are not well suited to capturing the long-distance dependencies
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Figure 2.2: Coordinating conjunction ambiguity. Parse a, which is correct, implies that

the GATA-1 genes of mice and humans were cloned. Parse b suggests instead that human

GATA-1 genes and a mouse were cloned.
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Parser name Original citation Release used Source language

Bikel 0.9.81 Bikel (2002) Apr 2004 Java

Bikel 0.9.9c1 Ibid. Sep 2005 Java

Charniak2 Charniak (2000) Aug 2005 C++

Charniak-Lease3 Lease and Charniak (2005) Jul 2005 C++

Collins 14 Collins (1999) Dec 2002 C

Collins 24 Ibid. Dec 2002 C

Collins 34 Ibid. Dec 2002 C

Stanford-lex5 Klein and Manning (2002) Jun 2006 Java

Stanford-unlex5 Klein and Manning (2003) Jun 2006 Java

Table 2.1: The treebank parsers chosen for this investigation.

1http://www.cis.upenn.edu/˜dbikel/software.html
2ftp://ftp.cs.brown.edu/pub/nlparser/
3http://www.cog.brown.edu/Research/nlp/resources.html
4http://people.csail.mit.edu/mcollins/code.html
5http://nlp.stanford.edu/software/lex-parser.shtml

and subtleties of phrasal attachment which could facilitate the successful analysis of a

sentence like that in Figure 2.1. Constituent parsers and dependency parsers all have

the appropriate level of sophistication, but a wide variety of different grammars and

conceptual frameworks that makes comparing them difficult. However, there is one

class of parsers that is both numerous and up-to-date, and covers a variety of different

algorithms which all use the same output format (bar a few small details). These are

sometimes referred to as treebank parsers as they are usually trained and optimized on

the PTB and produce output conformant with its standards. For the purposes of this

investigation, another advantage is that there is sufficient annotated test data available

from the biological domain to test their adaptability to bioinformatics applications. Fi-

nally, the main advantage of using dependency parsers—a closer relationship between

syntactic and semantic representations useful for applications like IE—can also be ob-

tained using treebank parsers (see the following chapters).

The treebank parsers chosen for this project are listed in Table 2.1. All of them are

trained on the Penn Treebank, and take roughly the same input—POS-tagged text—

although the Charniak parsers have their own built-in POS taggers so take unannotated

text. They all produce directly comparable output—constituent trees in formats similar

to the PTB’s—but differ in the details of the features of the training sentences they

condition probabilities on, the learning methods they use for estimating and smoothing

these probabilities, and the algorithms by which they arrive at the most probable parse

for a given unseen sentence. A full discussion of the theory and implementation of the

probabilistic context-free grammars embodied by these parsers is beyond the scope of

this chapter, but the interested reader is referred to Jurafsky and Martin (2000, chapters
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10 and 12) for background and then the papers listed in Table 2.1 for details.

All of the parsers are freely-available and come with source code. I chose to test

more than one version of each to determine whether refinements made on the PTB do

in fact cause corresponding improvements on biological text, as this is far from certain

a priori. The three versions of the Collins parser are not actually separate releases, but

different language models of increasing complexity. Model 2 treats complements and

adjuncts of constituents as distinct categories, where a complement functions together

with its parent to express one fact (the student of physics), and an adjunct expresses an

attribute incidental to the meaning of its parent (the student with red hair). 6 It incor-

porates statistical parameters representing the likely patterns of allowable complements

(known as subcategorization frames) for words which take complements. Model 3 in-

corporates model 2 and adds improved handling of relative clauses introduced with

‘wh-pronouns’ such as which , where, and that .

The Charniak-Lease version of the Charniak parser is the only one with any bio-

logical adaptation, although I attempted to ensure that the other parsers were provided

with appropriate assistance from external tools to put them on a level playing field (see

Section 2.1.2). The unlexicalized version of the Stanford parser (Stanford-unlex) is

unlike the others in that it considers text to be a sequence of POS tags, and discards the

actual word information. This makes it much more efficient than its lexicalized cousin,

but it has also been suggested (Finkel et al., 2004) that this strategy might prove less

error-prone on biological text, which has a different vocabulary and word distribution

to the PTB text on which the lexicalized parsers were trained.

2.1.2 Preparing the evaluation

The evaluation data for these experiments was drawn from the GENIA Treebank (GTB),

a beta-stage corpus of abstracts drawn randomly from MEDLINE with the search terms

“human”, “blood cell” and “transcription factor”. The 200 abstracts from the first re-

lease of the corpus were used. These have been manually annotated with POS tags,

named entity classes and boundaries, and syntax trees which broadly follow the con-

ventions of the PTB. I discarded the named entity information and gold-standard POS

tags, and re-tagged the corpus with the MedPost POS tagger (Smith et al., 2004) in

PTB mode to better simulate the kind of scenario where a parser would be employed

on completely unseen text. MedPost is a specialized biomedical POS tagger trained on

MEDLINE abstracts which can use the PTB tagset as well as its own tagging format;

its output was not hand-corrected or otherwise manually modified.

The Collins parser requires pre-tagged text from a PTB-compatible POS tagger, and

the Bikel parser documentation recommends the same—it can also be run on untagged

text if necessary, although I did not explore this option as it would almost certainly

6Examples from http://www-rohan.sdsu.edu/˜gawron/syntax/lectures/lec4.htm
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reduce performance considerably. The ‘vanilla’ Charniak parser has a built-in POS

tagger which is trained as part of the normal syntactic training process. The Charniak-

Lease parser’s tagging model, on the other hand, is de-coupled from the parsing model

so that it can be trained separately on any body of POS-tagged text; in fact, it is supplied

pre-trained on the sentences from the broader GENIA POS corpus 7 which are not also

in the GTB, plus all the sentences from sections 2–21 of the PTB.

Some manual editing was required to correct annotation errors and remove sen-

tences with uncorrectable errors, leaving 1,757 sentences, 42,013 tokens (discounting

punctuation) and 35,061 constituents in the gold standard—on average, 23.9 tokens

and 20.2 constituents per sentence. All errors were reported to the GENIA group. For

comparison purposes, the parsers were also tested against Section 23 of the PTB, which

is customarily used as a set-aside benchmark in the computational linguistics commu-

nity. In this case, instead of MedPost, the MXPOST tagger (Ratnaparkhi, 1996)—

which is optimized for the PTB and similar corpora—provided POS tag information.

This corpus had 2,416 sentences, 50,101 tokens (discounting punctuation) and 44,177

constituents—on average, 20.7 tokens and 18.3 constituents per sentence.

Tweaking of parser options was kept to a minimum, aside from trivial changes to

allow for unexpectedly long words, long or complex sentences (e.g. default mem-

ory/time limits), and differing standards of tokenization and punctuation, although a

considerable degree of pre- and post-processing by Perl scripts was also necessary to

bring these into line (see Section 2.3.9 and Section 5.1.3). More detailed tuning would

have massively increased the number of variables under consideration, given the num-

ber of compile-time constants and run-time parameters available to the programs; fur-

thermore, it was assumed that each author distributes his software with an optimal or

near-optimal configuration, at least for in-domain data.

2.1.3 Post-processing procedure

After parsing, but before calculating any of the accuracy measures described in the fol-

lowing section, my post-processing scripts stripped the following stand-alone punctua-

tion symbols from the parser output and the gold standard: period, comma, semicolon,

colon, and double-quotes (whether they were expressed as a single double-quotes char-

acter, or pairs of opening or closing single-quotes). This is because the attachment and

labeling of these symbols is (to a large extent) a matter of convention rather than gram-

matical necessity.

In addition, several operations had to be performed to remove or correct technical

features of the parse trees that lay outside the common set of features supported by all

the parsers and the reference treebanks. The GTB and PTB both contain function tags

7http://www-tsujii.is.s.u-tokyo.ac.jp/˜genia/topics/Corpus/pos3.02p.
html
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(see Section 1.9.4), and although software exists which can add these to parser outputs

(Blaheta and Charniak, 2000), this is not universally compatible, so these tags were

stripped. Any redundant constituents were removed—that is, constituents whose only

daughter is another constituent of the same label, like the outer NP in the construction

(NP (NP (NNS cells))). Similarly, the outermost constituent in any sentence (the

root node of the parse tree) is customarily held within a container constituent labeled

TOP, S1 or ROOT. These non-meaningful constituents were removed in order to avoid

artificially inflating accuracy scores, since they do not vary between sentences.

The PTB uses the pseudo-constituents NAC and NX to mark out the internal struc-

ture of noun phrases, but the GENIA corpus simply uses NP in these cases (NP also

denotes the overall noun phrase). Therefore, it was necessary to replace these tags with

NP in the parses of GENIA. I also replaced PRT labels with ADVP labels throughout

the parses and gold standard corpora, as these two kinds of phrases are commonly held

to be equivalent for scoring purposes—see for example Collins (2003).

An high-level overview of the preparation, parsing and post-processing procedure

is shown in Figure 2.3.

2.2 Performance evaluation methodologies

I initially chose to rate the parsers in the assessment by several different means which

can be grouped into two broad classes: constituent- and lineage-based. While Sampson

and Babarczy (2003) showed that there is a limited degree of correlation between the

per-sentence scores assigned by the two methods, they are independent enough that

a fuller picture of parser competence can be built up by combining them and thus

sidestepping the drawbacks of either approach. However, overall performance scores

designed for competitively evaluating parsers do not provide much insight into the

aetiology of errors and anomalies, so I developed a third approach based on production

rules that enabled the megabytes of syntactic data to be mined for enlightening results

more effectively. These evaluation strategies are described below.

2.2.1 Constituent-based assessment

Most evaluations of parser performance are based upon three primary measures: la-

beled constituent precision and recall, and number of crossing brackets per sentence.

Calculation of these scores for each sentence is straightforward. Each constituent in

a candidate parse is treated as a tuple ��	
��� ����� �	
����, where �	
��� and

�	
��� are the indices of the first and last words covered by the constituent. Preci-

sion (known in other fields as Positive Predictive Value) is the proportion of candidate

constituents that are correct and is calculated as follows:

54



GENIA
Treebank

Strip
annotations

Tag with
MedPost
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Charniak parsers

Parse with
other parsers

Output
treebank

Output
treebank

Strip
punctuation
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Normalize
trees & labels
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Normalize
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Compare
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Figure 2.3: Overview of experimental protocol for parser comparison against GENIA Tree-

bank. The protocol for comparing the parsers against Section 23 of the PTB was identical

except that the MXPOST tagger was used instead of MedPost. Shaded rectangles represent

data and rounded boxes are actions.
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� �
# true positives

# true positives + # false positives
(2.1)

Recall (equivalent to the Sensitivity metric in other fields) is the proportion of con-

stituents from the gold standard that are in the candidate parse:

� �
# true positives

# true positives + # false negatives
(2.2)

In other words, precision errors are false positives, and recall errors are false neg-

atives. The crossing brackets score is reached by counting the number of constituents

in the candidate parse that overlap with at least one constituent in the gold standard, in

such a way that one does not subsume the other.

Although this scoring system is in wide use, it is not without its drawbacks (Samp-

son, 2000). Most obviously, it gives no credit for partial matches, for example when

a constituent in one parse covers most of the same words as the other but is truncated

or extended at one or both ends. Indeed, one can imagine situations where a long con-

stituent is truncated at one end and extended at the other compared to the gold standard;

this would incur a penalty under each of the above metrics even though some or even

most of the words in the constituent were correctly categorized. One can of course

suggest modifications for these measures designed to account for particular situations

like these, although not without losing some of their elegance. The same is true for la-

bel mismatches, where a constituent’s boundaries are correct but its category is wrong.

This scoring scheme originally analysed the tree structure only, giving unlabeled pre-

cision and recall (Black et al., 1991), but the improved performance of modern parsers

has made labeled comparison the norm.

More fundamentally, it could be argued that by taking ‘horizontal’ slices through

the syntax tree, these measures lose important information about the ability of a parser

to recreate the gross grammatical structure of a sentence. The height of a given con-

stituent in the tree, and the details of its ancestors and descendants, are not directly

taken into account, and it is surely the case that these broader phenomena are at least

as important as the extents of individual constituents in affecting meaning. However,

constituent-based measures are not without specific advantages too. These include the

ease with which they can be broken down into scores per label to give an impression of

a parser’s performance on particular kinds of constituent, and the straightforward mes-

sage they deliver about whether a badly-performing parser is tending to over-generate,

under-generate or mis-generate (low precision, low recall, or high crossing brackets

respectively).
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Figure 2.4: Skipping the POS tag, the lineage string for uniquely is: [ ADVP ] VP VP

S . The left and right boundary markers record the fact that the ADVP constituent both starts

and ends with this word.

2.2.2 Lineage-based assessment

In contrast to this horizontal-slice philosophy, Sampson and Babarczy (2003) advocate

a vertical view of the syntax tree. By walking up the tree structure from the immediate

parent of a given word until the top node is reached, and adding each label encountered

to the end of a list, a ‘lineage’ representing the word’s ancestry can be retrieved. Bound-

ary symbols are inserted into this lineage before the highest constituent that begins on

the word, and after the highest constituent that ends on the word, if such conditions

apply; this allows potential ambiguities to be avoided, so that the tree as a whole has

one and only one corresponding set of ‘lineage strings’ (see Figure 2.4).

Using dynamic programming, an edit distance (Levenshtein, 1966) can be calcu-

lated between each word’s lineage strings in the candidate parse and the gold standard,

by determining the smallest number of symbol insertions, deletions and substitutions

required to transform one of the strings into the other. The leaf-ancestor (��) met-

ric, a similarity score ranging between 0 (total parse failure) and 1 (exact match), is

then calculated by taking into account the lengths of the two lineages (���� is the edit

distance):

�� � ��
�����lineage

�
 lineage

�
�

�����	�lineage
�
� � �����	�lineage

�
�

(2.3)

The per-word score can then be averaged over a sentence or a whole corpus in order
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to arrive at an overall performance indicator. Besides avoiding some of the limitations

of constituent-based evaluation discussed above, one major advantage of this approach

is that it can provide a word-by-word measure of parser performance, and thus draw

attention easily to those regions of a sentence which have proved problematic (see Sec-

tion 2.3.5 for an example). The algorithm can be made more sensitive to near-matches

between phrasal categories by tuning the cost incurred for a substitution between sim-

ilar labels, e.g. those for ‘singular noun’ and ‘proper noun’, rather than adhering to

the uniform edit cost dictated by the standard Levenshtein algorithm. In order to avoid

over-complicating this study, however, I chose to keep the standard penalty of 1 for

each insertion, deletion or substitution.

One drawback to leaf-ancestor evaluation is that although it scores each word (sen-

tence, corpus) between 0 and 1, and these scores are presented here as percentages

for readability, it is misleading to think of them as percentages of correctness in the

same way that one would regard constituent precision and recall. Indeed, the very fact

that it results in a single score means that it reveals less at first glance about the broad

classes of errors that a parser is making than precision, recall and crossing brackets

do. Another possible objection is that since an error high in the tree will affect many

words, the system implicitly gives most weight to the correct determination of those

features of a sentence which are furthest from being directly observable. One might ar-

gue, however, that since a high-level attachment error can grossly perturb the structure

of the tree and thus the interpretation of the sentence, this is a perfectly valid approach;

it is certainly complementary to the uniform scoring scheme described in the previous

section, where every mistake is weighted identically.

2.2.3 Production-based assessment

In order to properly characterize the kinds of errors that occurred in each parse, and

to help elucidate the differences between multiple corpora and between each parser’s

behaviour on each corpus, I developed an additional scoring process based on com-

paring the production rules used to generate the structure of the sentence, between the

gold standard and a candidate parse. A production, being the application of a specific

production rule at a particular point in the tree, can be expressed as:


��
��������  ������� � 
��
� � � �
��
�

Production precision and recall (and thus F-measure) can be calculated as in a nor-

mal labeled constituent-based assessment, except that a proposed production is a true

positive if and only if there exists a production in the gold standard with the same

parent label and boundaries, and the same daughter labels in the same order. (The

respective widths of the daughter constituents, where applicable, are not taken into ac-
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count, only their labels and order; any errors of width in the daughters are detected

when they are tested as parents themselves.) Although the scoring scripts do not count

POS tags as constituents when calculating constituent- and lineage-based scores for

each parser, since the POS tags are not provided by the parsers, they do allow POS tags

as daughter labels when computing the production precision and recall scores, since

they occur on the right-hand sides of some of the production rules that make up each

parser’s grammar.

Furthermore, as an aid to the detection and analysis of systematic errors, I devel-

oped a heuristic for finding the closest-matching candidate productions in a parse, in

each case where a production ���� � in the gold standard is not exactly matched in

the parse.

1. First, the heuristic looks for productions with correct boundaries and parent la-

bels, but incorrect daughters. The corresponding production rules are returned.

2. Failing that, it looks for productions with correct boundaries and daughters, pre-

serving the order of the daughters, but with incorrect parent labels. The corre-

sponding production rules are returned.

3. Failing that, it looks for productions with correct boundaries but incorrect parent

labels and daughters. The corresponding production rules are returned.

4. Failing that, it looks for all extensions and truncations of the production (bound-

ary modifications such that there is at least one word from ���� � still covered)

with correct parent and daughter labels and daughter order, keeping only those

that are closest in width to ���� � (minimum number of extensions and trun-

cations). The meta-rules EXT ALLMATCH and/or TRUNC ALLMATCH as appro-

priate are returned.

5. Failing that, it looks for all extensions and truncations of the production where

the parent label is correct but the daughters are incorrect, keeping only those that

are closest in width to �����. The meta-rules EXT PARENTMATCH and/or

TRUNC PARENTMATCH are returned.

6. If no matches are found in any of these classes, a null result is returned.

Note that in some cases, � production rules of the same class may be returned, for

example when the closest matches in the parse are two productions with the correct

parent label, one of which is one word longer than ���� � , and one of which is one

word shorter. It is also conceivable that multiple productions with the same parent or

same daughters could occupy the same location in the sentence without branching, al-

though it seems unlikely that this would occur apart from in pathologically bad parses,

and the redundant constituent removal process (Section 2.1.3) would have collapsed
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such cases anyway. In any ambiguous cases, no attempt is made to decided which is

the ‘real’ closest match; all � matches are returned, but they are downweighted so that

each counts as �

�
of an error when error frequencies are calculated. In no circumstances

are matches from different classes returned.

The design of this procedure reflects my requirements for a tool to facilitate the di-

agnosis and summarization of parse errors. I wanted to be able to answer questions like

“given that parser A has a low recall for NP � NN NN productions, what syntactic

structures is it generating in their place? Why might this be so? And what effect might

these errors have on the interpretation of the sentence?” Accordingly, as the heuristic

casts the net further and further to find the closest match for a production���� � , the

classes to which it assigns errors become broader and broader. Any match at stages

1–3 is not simply recorded as a substitution error, but a substitution for a particular

incorrect production rule. However, matches at stages 4 and 5 do not make a dis-

tinction between different magnitudes of truncation and extension, and at stage 5 the

information about the daughters of incorrect productions is discarded. This allowed

me to identify broad trends in the data even where the correspondences between the

gold standard and the parses were weak, yet nonetheless recover detailed substitution

information akin to confusion matrices where possible.

Similar principles guided the decision not to consider extensions and truncations

with different parent labels as potential loose matches, in order to avoid uninformative

matches to productions at different levels in the syntax tree. In practice, the matches

returned by the heuristic accounted for almost all of the significant systematic errors

suffered by the parsers (see Section 2.3.7)—null matches were infrequent enough in

general that their presence in larger numbers on certain production rules was itself

useful from an explanatory point of view.

2.2.4 Alternative approaches

Several other proposed solutions to the evaluation problem exist, and it is an ongoing

and continually challenging field of research. Suggested protocols based on grammat-

ical or dependency relations (Crouch et al., 2002), head projection (Ringger et al.,

2004), alternative edit distance metrics (Roark, 2002) and various other schemes have

been suggested. Many of these alternative methodologies, however, suffer from one

or more disadvantages, such as close coupling to a different syntactic formalism (e.g.

head-driven phrase structure grammar) or class of parser (e.g. partial parsers), or a re-

quirement for a specific manually-prepared evaluation corpus in a non-treebank format.

In addition, none of them deliver the richness of information that production-based as-

sessment does, particularly in combination with the other methods outlined above. A

different approach to parser evaluation is explored in the next chapter.
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2.3 Results and discussion

Here I present the comparative parser accuracy results for all parsers on each corpus,

followed by a more detailed analysis of the errors suffered by the parsers on the GENIA

corpus, along with some computational efficiency measurements.

2.3.1 Overall performance comparison

The results of this experiment are summarized in Table 2.2, showing the scores on

both GENIA and the PTB. The �� score given is the mean of the leaf-ancestor scores

for all the words in the corpus, and the precision and recall scores are taken over the

entire set of constituents in the corpus. Initially, these measures were calculated per

sentence, and then averaged across each corpus, but the presence of pathologically

short sentences such as Energy. gives an unrepresentative boost to per-sentence aver-

ages. (Interestingly, many published papers do not make clear whether the results they

present are per-sentence averages or corpus-wide scores.)

F-measure (effectiveness; van Rijsbergen, 1979) is the harmonic mean of precision

and recall; it is a balanced score that penalizes algorithms which favour one to the

detriment of the other, and is calculated as follows:

� �
�� � ��

� ��
(2.4)

The first important point to note about these scores is that while the Charniak and

Stanford parsers processed both corpora without any parse failures (completely un-

parseable sentences), the other parsers encountered total failures on one or both cor-

pora, so their ��, precision, recall and � scores are distorted (see below). Some parse

failures did occur on the PTB but they were more widespread and numerous on GE-

NIA. Parse failures aside, the overall difference in difficulty between the two corpora

is immediately apparent, with each parser version achieving more than twice as many

perfect parses on the PTB as on GENIA. However, all of them proved to be at least

reasonably capable on this unfamiliar genre of writing, indicating that an NLP strategy

based on applying PTB-trained parsers to biological texts is not unreasonable. In terms

of both �� and � scores, the Charniak parser comes out on top when processing the

PTB, and the Charniak-Lease parser when parsing GENIA.

2.3.2 Parse failures

Since most of the parsers suffered from a considerable number of parse failures in GE-

NIA, Table 2.3 shows recalculated scores based on evaluation of successfully-parsed

sentences only. Conflating the performance drops caused by poorly parsed sentences
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Raw scores on GENIA (1,757 sentences)

Parser �� � � � Perfect Failure

Bikel 0.9.8 91.1 81.4 77.5 79.4 14.3 0.06

Bikel 0.9.9c 90.8 81.6 77.2 79.4 14.5 0.11

Charniak 90.8 79.3 77.0 78.1 13.3 0.00

Charniak-Lease 91.5 81.5 78.8 80.2 14.9 0.00

Collins 1 88.7 79.1 73.9 76.4 13.2 0.68

Collins 2 87.9 81.3 74.5 77.8 14.0 1.42

Collins 3 86.3 81.6 73.3 77.2 14.0 2.28

Stanford-lex 88.3 72.8 69.6 71.1 10.0 0.00

Stanford-unlex 88.6 73.9 70.8 72.3 11.1 0.00

Raw scores on PTB (2,416 sentences)

Parser �� � � � Perfect Failure

Bikel 0.9.8 94.5 88.1 88.2 88.2 33.9 0.04

Bikel 0.9.9c 94.5 88.1 88.2 88.2 34.1 0.00

Charniak 95.1 89.9 89.7 89.8 38.3 0.00

Charniak-Lease 94.8 88.9 89.0 89.0 36.6 0.00

Collins 1 94.2 86.9 86.8 86.8 31.5 0.00

Collins 2 94.4 87.4 87.3 87.3 33.9 0.04

Collins 3 94.3 87.4 87.2 87.3 33.5 0.08

Stanford-lex 93.1 84.4 85.2 84.8 27.0 0.00

Stanford-unlex 92.5 83.7 83.4 83.6 26.4 0.00

Table 2.2: Initial performance comparison. All scores are percentages. Leaf-ancestor (��)

score is an average over all the words in each corpus. Precision (� ) and recall (�), and

therefore F-measure (� ), are averages over all the constituents in each corpus. Perfect and

Failure indicate the proportion of sentences which were parsed perfectly, and completely

unparseable, respectively.

with those caused by totally unparseable sentences, where no constituents were gener-

ated at all, gives an inaccurate picture of parser behaviour.

Sentence failures are clearly more of a problem for the Collins parser than for the

others. There is a known problem with models 2 and 3 failing on two sentences in the

PTB section 23 due to complexity, but this problem is exacerbated in GENIA, with

even the simpler model 1 failing on a number of sentences, one of which was only 24

words long plus punctuation:8

Moreover, kappa 1-kappa 3 can each be deleted from the TNF-alpha pro-

moter with little effect on the gene’s inducibility by PMA.

8The possessive suffix ’s is treated as a distinct word by treebank-style parsers.
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Scores on GENIA, successfully-parsed sentences only

Parser �� � � � Mean � # parsed

Bikel 0.9.8 91.2 81.4 77.5 79.4 2.05 1,756

Bikel 0.9.9c 91.3 81.6 77.6 79.6 2.00 1,755

Charniak 90.8 79.3 77.0 78.1 2.14 1,757

Charniak-Lease 91.5 81.5 78.8 80.2 1.90 1,757

Collins 1 90.5 79.1 75.4 77.2 2.30 1,745

Collins 2 91.2 81.3 77.2 79.2 2.01 1,732

Collins 3 91.3 81.6 77.4 79.4 1.95 1,717

Stanford-lex 88.3 72.8 69.6 71.1 3.18 1,757

Stanford-unlex 88.6 73.9 70.8 72.3 2.98 1,757

Scores on PTB, successfully-parsed sentences only

Parser �� � � � Mean � # parsed

Bikel 0.9.8 94.5 88.2 88.3 88.2 1.07 2,415

Bikel 0.9.9c 94.5 88.1 88.2 88.2 1.09 2,416

Charniak 95.1 89.9 89.7 89.8 0.88 2,416

Charniak-Lease 94.8 88.9 89.0 89.0 0.99 2,416

Collins 1 94.2 86.9 86.8 86.8 1.23 2,416

Collins 2 94.5 87.4 87.4 87.4 1.19 2,415

Collins 3 94.5 87.4 87.4 87.4 1.18 2,414

Stanford-lex 93.2 84.4 85.2 84.8 1.40 2,416

Stanford-unlex 92.5 83.7 83.5 83.6 1.55 2,416

Table 2.3: Performance scores, discounting all parse failures. Scores for the Charniak

and Stanford parsers, and Collins model 1 on the PTB, are shown again for comparison,

although they did not fail on any sentences. Once again, all scores are percentages, ex-

cept for Mean � (average crossing brackets per successfully-parsed sentence) and number

parsed.

Apart from this example, the parse failures for all of the parsers tended to occur in

longer, more complex sentences.

Discounting unparseable sentences, the three Collins models do show a consistent

monotonic increase in precision, recall and �� from the simplest to the most complex,

accompanied by a decrease in the number of crossing brackets per sentence. Interest-

ingly, these intervals are much more pronounced on GENIA than on the PTB, where the

performance seems to level off between models 2 and 3. Difficult sentences aside, then,

it appears that the advanced features of models 2 and 3 are actually more valuable on

this unfamiliar corpus than on the original development domain—but only when they

do not trip the parser up completely. In the documentation supplied with his parser,

Collins suggests a strategy whereby model 3 is used to obtain a parse where possible,
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falling back to model 2 and then model 1 if necessary on failure, thus taking advantage

of the improved features of models 2 and 3 without sacrificing robustness. Other meth-

ods for combining the output of several parsers are discussed in Clegg and Shepherd

(2005).

2.3.3 Lexicalized vs. unlexicalized parsing

It is interesting to examine the behaviour of the unlexicalized Stanford parser (Stanford-

unlex, which only considers POS tags, rather than actual words) compared to its lex-

icalized sister (Stanford-lex), and to all the other parsers which are also lexicalized.

Although Stanford-lex scores marginally better on every measure on the PTB, the situ-

ation on GENIA is reversed, with Stanford-unlex coming out ahead. This indicates that

Stanford-lex is making mistakes due to the unfamiliar nature of the biological domain

vocabulary in GENIA, which Stanford-unlex is oblivious to as it is making decisions

based only on the POS tags of the words (supplied by MedPost).

Finkel et al. (2004) suggest that this phenomenon makes Stanford-unlex particu-

larly suitable for use in the biological domain, and if one were to compare it only to

its lexicalized cousin, this would be a fair conclusion. However, in the broader com-

parison of multiple parsers presented here, one can see that this conclusion is only part

of the bigger picture. The Bikel, Charniak and Collins parsers all do consistently bet-

ter than Stanford-unlex on those sentences that do not cause complete parse failure,

despite the fact that they are all lexicalized. The Charniak parsers, like the Stanford

parsers, do not fail on any sentences, and both outperform Stanford-unlex across the

board on both corpora. This is impressive given that the vanilla Charniak parser has

the ‘wrong’ POS-tagging model for GENIA.

Therefore, a more accurate conclusion might be that the unlexicalized approach is a

potentially powerful tool when tackling lexically unfamiliar domains like biology, but

Stanford’s implementation is not good enough to compete with the state of the art in

lexicalized parsers.

2.3.4 Precision-recall balance

The results in Table 2.3 show that all the parsers on GENIA consistently score lower for

recall than they do for precision. In contrast, for the PTB these scores tend to come out

roughly equal. This indicates that the parsers are ‘under-generating’ on GENIA, that

is, producing sparser parse trees than those recorded by the annotators. However, since

both corpora have roughly the same distribution of constituents per sentence (Clegg

and Shepherd, 2005), this suggests that there are unfamiliar constructions in GENIA

that the parsers are not fleshing out sufficiently.
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Charniak Charniak-Lease

Correctly-tagged words 34,715 38,543

. . . Mean �� 92.1 92.7

Incorrectly-tagged words 7,298 3,470

. . . Mean �� 84.6 77.5

Mean LA score, all words 90.8 91.5

Table 2.4: Mean �� scores on GENIA for the Charniak parsers, broken down by words

that are correctly or incorrectly POS-tagged.

2.3.5 Part-of-speech tagging

While the specialized MedPost tagger which was used to prepare the corpus for the

other parsers achieved a POS-tagging accuracy of 93% on GENIA, and the Charniak-

Lease tagging model achieved 96%, the original Charniak parser’s built in tagger only

achieved 83%, since it was trained on the PTB only and therefore not exposed to most

of the specialised vocabulary found in GENIA.

In order to test the impact of this design decision on the Charniak parser, I calcu-

lated the mean �� scores for correctly-tagged and incorrectly-tagged words only, for

each version; see Table 2.4. Each version achieves a similar score for the lineages of

correctly-tagged words, with the overall score for the vanilla version being dragged

down further by larger numbers of incorrectly-tagged words than is the case for the

Lease version. The results suggest that incorrectly-tagged words account for much

of the difference in overall parser performance between the vanilla version and the

extended-vocabulary Lease version.

2.3.6 Parser effectiveness by constituent type

To help elucidate further the strengths and weaknesses of the parsers on the GENIA

corpus, I then measured precision and recall for each gold standard constituent, and

calculated the F-measure per phrase type (see Section 2.3.1). The results are presented

in Figure 2.5. It is immediately apparent that all the parsers achieve roughly similar

performance on each of the common constituent types, apart from PRN (parenthetical

phrases) which seem to have posed a particular problem for the Stanford parsers. This

aside, the parsers only differ strikingly from each other on the comparatively rare con-

stituents toward the right of the figure. This suggests that a significant proportion of

the errors made on the more common phrase types are caused by genuine differences

between GENIA and the training corpus, whether they are differences of English us-

age or merely of convention, rather than syntactic quirks that bring to light specific and

idiosyncratic deficiencies in any one parser’s approach.

It is not obvious why all the parsers performed so badly on adjective phrases
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Figure 2.5: Parser effectiveness by phrase type on the GENIA corpus. The number of times

each phrase type appears is given in brackets after its name.

(ADJP), especially since adjectives themselves (JJ) were tagged very effectively by

MedPost (87% correct), the Charniak-Lease parser (92%) and even the original Char-

niak parser which did not have the benefit of any exposure in training to biomedical

adjectives (90%). However, an analysis at the level of production rules (see below) can

shed some light on this.

2.3.7 Analysis of production errors

Much more detailed information can be garnered from an inspection of the F-measures

for individual production rules—calculated as described in Section 2.2.3, with a true

positive requiring that the parent and daughter nodes all match. Figure 2.6 shows these

results for the most common production rules found in GENIA; while they constitute

less than 1% of all the distinct rules used in the corpus, they account for over 20% of the

instances of actual productions. It is interesting to note that while Figure 2.5 averages

the effectiveness over all parent nodes with the same phrase type, Figure 2.6 highlights

particular difficulties in retrieving specific syntactic structures. For example, all parsers

do very well on NP � DT NN constructions (single nouns with determiners), since

a determiner is a closed-class word that characteristically appears at the start of noun

phrases, but much more poorly on NP � NP CC NP constructions (conjoined noun

phrases, such as monocytes and macrophages). An analysis based purely on phrase
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Production rule (with no. of occurrences in gold standard)

Parser effectiveness by production rule (top 10 rules only)
Bikel 0.9.8

Bikel 0.9.9c
Charniak

Charniak-Lease
Collins 1
Collins 2
Collins 3

Stanford-lex
Stanford-unlex

Figure 2.6: Parser effectiveness by production rule on the GENIA corpus. The number of

times each production rule is used is given in brackets after its name.

types cannot make this distinction.

Another important point raised by the results in Figure 2.6 is the issues all parsers

encounter with prepositional phrase attachment (see Section 1.9). It is demonstrated by

the comparatively low scores for noun and verb phrases with prepositional daughters

(NP � NP PP and VP � VBN PP) in Figure 2.6 compared to the scores for noun

and verb phrases in general in Figure 2.5. As well as these issues that affect all the

parsers, certain phenomena specific to individual parsers are apparent in Figure 2.6.

The vanilla Charniak parser scores particularly badly on the productions NP � NN

and NP � NN NN compared to the others, and the reasons for this are investigated

below. On the other hand, both Charniak parsers are clearly better at reconstructing

coordinating conjunctions than the others (NP � NP CC NP) although this is still a

difficult problem.

In order to determine the effects of the errors in Figure 2.6 on the resulting parse

trees, I applied the heuristic (see Section 2.2.3) to match each missing production with

the closest production in the parse. This produced a large amount of data, aggregated

first by missing production and then by replacement production, for each parser. While

many of the classes of error are difficult to make general statements about, there are a

few kinds where this level of detail allowed me to diagnose the causes of the problem

or to differentiate between significant mistakes and insignificant differences of repre-

sentation.
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There are several cases where the knock-on effects of the original Charniak parser’s

vocabulary problem are evident in these results. Instead of NP � NN, most parsers

make the mistake of proposing a wider noun phrase around 800 times (over 1,000 for

the Stanford parsers), a phenomenon that may be indicative of parsers collapsing the in-

ternal structure of multi-word noun phrases. However, the Charniak parser additionally

makes over 500 mistakes where the daughter is labeled as a proper rather than com-

mon noun. Presumably, this is partly due to non-proper nouns in GENIA that begin

with capital letters, such as Staphylococcus, Tissue Factor or Northern. (Similarly, the

Charniak-Lease parser very frequently makes the inverse of this mistake on the PTB.)

Such errors are of minor significance, especially when one considers that in an IE sce-

nario a dedicated named-entity recognizer would be responsible for tagging the noun

phrases of interest. A similar effect is visible for NP � NN NN, where the Charniak

parser is most likely to confuse the first noun for an adjective, a rare mistake amongst

the others. This substitution could conceivably cause more interpretational problems

since a noun generally represents an entity or process, whereas an adjective generally

corresponds to an attribute of an entity or process.

All parsers had problems with NP � NP CC NP productions, which can be at-

tributed at least in part to small differences in the annotation scheme for co-ordinated

constituents between GENIA and the PTB.9 In brief, this leads to coordinations being

annotated with more internal structure in GENIA than in the original corpus on which

the parsers were all trained, although many of the errors that result from these differ-

ences can be considered somewhat illusory. For example, a common error for most

of the parsers is to omit the daughter noun phrases when these consist only of single

words, and thus ‘flatten out’ the coordination structure (see Figure 2.7), as this is the

convention used in the PTB; however, it is after all just a convention, and it is hard to

imagine situations where this would adversely affect the interpretation of a sentence.

A different kind of harmless error is demonstrated by inspecting the substitutions

for the production ADVP � RB. This is always a single-word production, since the

label on the right-hand side is the part of speech tag for an adverb rather than another

phrase type. The most common mistake for all the parsers is to simply omit this pro-

duction, suggesting no alternative production with the same parent, child or location.

This leaves the adverb attached directly to the parent phrase (typically a verb phrase),

but semantically speaking, it is not clear that this would impede the adverb’s ability to

modify the verb to which it is attached (see Figure 2.8). Indeed, both corpora use both

versions in roughly equal numbers with no clear separation of duties, and as a result

the parsers show little consistency in their handling of this phenomenon.

A similar phenomenon is behind the poor performance of all the parsers on ADJP

constituents, as noted above. By far the most common production rule expandingADJP

9http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/topics/Corpus/
manual-for-bracketing.html
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a. ...

NP

NP

NN

monocytes

CC

and

NP

NN

macrophages

b. ...

NP

NN

monocytes

CC

and

NN

macrophages

Figure 2.7: Conventions for the representation of coordinating conjunctions in GENIA (a)

and the PTB (b); the parsers are all trained on the PTB and thus follow its standard. The

additional layer of NP nodes is a matter of policy rather than semantic necessity.

in the gold standard is ADJP � JJ, another single-word production. For each of the

parsers, almost every missing instance of this production is either replaced by a wider

adjective phrase, subsuming some of the material adjacent to the adjective, or left out

completely, leaving the adjective attached directly to the parent phrase with no change

of meaning. These two cases are split roughly 50-50. In the former case, any semantic

effects depend on the specific details of the tree for each sentence in which it occurs,

but in the latter case, semantics are unaffected.

Such errors of structural convention account for at least some of the precision-recall

disparity discussed in Section 2.3.4.

2.3.8 Computational efficiency

Parsing is not a fast process, and is arguably less suited to high-throughput, broad-

coverage literature sweeps than to focused analyses of document collections relating to

specific subjects. There is no reason however why parsing cannot be distributed over

large clusters of individual computers, since it is a canonically easy task to parallelize,

and in fact this strategy has been used to parse all of MEDLINE using a head-driven

phrase structure parser (a slightly different formalism to those discussed here) on a

network of several hundred PCs (J. Tsujii, U. of Tokyo, pers. comm.).

The easily distributable nature of parsing mitigates concerns over its computational

cost somewhat, but it is nonetheless useful to determine some measure of efficiency for

each of the parsers. To that end, I measured the execution times of each parser on the

GENIA treebank using the GNU time command. The total processor time for each

parser, calculated as the sum of the user and system times for the process as reported by

time, is given in Table 2.5. The times do not include pre- or post-processing scripts

although these are negligible compared to the actual parsing process in each case. All

processes were running on one processor of a 3 GHz SMP Linux PC, without exclusive
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a. S

NP

NN

TCF-1

NN

mRNA

VP

VBD

was

VP

VBN

expressed

ADVP

RB

uniquely

PP

...

b. S

NP

NN

TCF-1

NN

mRNA

VP

VBD

was

VP

VBN

expressed

RB

uniquely

PP

...

Figure 2.8: Single-word adverbs can be plausibly located within minimal adverb phrases

(a), or attached directly to the parent verb phrase (b), without changing the interpretation

of a sentence. Both versions occur in both corpora.

access. Had the parsers been allowed exclusive utilization of the machine, the actual

wall times10 would have been close to the total processor times.

Further analysis of the time output indicated that the older Bikel parser, and the

lexicalized Stanford parser, suffered much more from I/O page faults (swapping mem-

ory to/from disk) than the others, with Bikel causing 133,000 page faults and Stanford-

lex 1.3 million. This suggests that much of the performance difference between these

parsers and the others is down to excessive memory usage, particularly for Stanford-

lex. Indeed, I observed that the Java virtual machine running Stanford-lex was taking

up over 2.5 gigabytes of system memory at one point. The number of I/O page faults

suffered by the other parsers ranges from 10,000 for Stanford-unlex to none at all for

the much more efficient Charniak parsers.

10The amount of real time passed during the execution of the process.
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Parser Time (h:mm:ss)

Bikel 0.9.8 7:21:08

Bikel 0.9.9c 3:20:38

Charniak 1:49:34

Charniak-Lease 1:18:36

Collins 1 0:52:55

Collins 2 1:16:22

Collins 3 1:21:33

Stanford-lex 7:12:31

Stanford-unlex 2:30:02

Table 2.5: Total processor time for each parser on the GENIA treebank, on a 3GHz PC.

2.3.9 Notes on tokenization and punctuation

Although the tagset and linguistic conventions used by the parsers and corpora in this

evaluation conform in theory to the de facto PTB standards, many weeks of program-

ming and testing time were spent developing ‘plumbing’ scripts to account for the

different representations of tokenization and punctuation across the various parsers,

POS taggers and corpora. The impact of such considerations on a multi-stage NLP

project must not be underestimated. A fuller discussion of these issues is presented in

Section 5.1.3.

2.4 Concluding remarks

In terms of sheer parse accuracy, the Charniak-Lease parser emerges as the overall

winner, its dedicated biomedical POS-tagging model making it competitive with those

parsers which rely on MedPost, and giving it a spectacular lead over the original Char-

niak parser which has a general-English POS tagger built in. It achieves this without

sacrificing the robustness and efficiency of the original version; both of these consid-

erations are important in parser selection for real-world NLP projects as slowness and

parse failures are highly undesirable. However, it must be noted that while MedPost is

trained on a broad selection of MEDLINE abstracts across various topics, the Charniak-

Lease POS-tagging model is trained on GENIA (albeit a different section of GENIA to

that which was used in this evaluation), meaning it has a home-topic advantage.

Since these experiments were performed, the Mining the Bibliome project 11 has

released two syntactically-annotated corpora covering different biomedical topics than

GENIA, and a similar experiment on these would help tease out the magnitude of

this advantage, as would a retrained POS-tagging model for this parser (trained for

11http://bioie.ldc.upenn.edu/
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example on the MedPost training set). However, the differences between all these data

sources (both of superficial formatting standards and subtle but important linguistic

conventions) meant that such investigations were not judged to be an optimum use of

research time.

One general lesson learnt from the analysis of errors at the production level is that

the evaluation of performance with overall parse accuracy scores is seriously limited.

While high �� and � scores indicate that a particular parser is able to reproduce the

gold standard syntactic annotation accurately, including any conventions or quirks that

the annotators may have adopted, lower scores do not reveal whether the errors re-

sponsible are semantically significant. Nor do they assist in the identification of spe-

cific problem areas, such as prepositional phrase attachment or the original Charniak

parser’s POS-tagging problems. It seems vital, therefore, that any IE system (or more

broadly, any practical NLP project) that employs a syntactic parsing stage is designed

and tested with these considerations in mind.

Various methods have been devised to boost the accuracy of parses of biomedical

text, despite the absence of sufficient quantities of syntactic data to retrain on, us-

ing both knowledge-poor (Clegg and Shepherd, 2005) and knowledge-rich (Lease and

Charniak, 2005) approaches. While statistically-significant increases in performance

scores have been achieved, it is not clear whether these gains equate to more mean-

ingful and correct parses or simply more accurate reconstructions of the conventions

of the test corpora. There are a number of methods for inferring semantic information

from syntactic data (Blaheta and Charniak, 2000; Miller et al., 2000, e.g.), and it is ul-

timately the effect of any parsing improvements upon such methods that will determine

their worth. The following chapters explore these ideas further.
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Chapter 3

Generating and evaluating

dependency graphs

Although constituent trees (see Section 1.9.1 and the previous chapter) are the syntac-

tic standard of choice for many of the best parsers available, they are not the easiest

structures to extract semantic information from, nor are they necessarily simple to un-

ambiguously evaluate. This chapter explores these themes; it is based on the work first

published in Clegg and Shepherd (2007a).

3.1 Motivation

As described in Section 1.9.2, dependency grammars provide an alternative way of

characterizing syntax to the constituent-based model used in the previous chapter, and

one that is convenient and tractable for the extraction of semantic information. If one’s

ultimate goal is to recreate a network of biological entities that are represented by a

network of semantic concepts, it makes sense intuitively that a network-like linguis-

tic representation would make a good starting point. While purpose-built dependency

parsers of various kinds exist, the problems of comparing and selecting dependency

parsers for practical use have been discussed already. In brief, the lack of consistency

between different dependency grammars and the lack of dependency-annotated biolog-

ical text for evaluation are particularly problematic. While Pyysalo et al. (2007a) have

begun to address the latter problem, their dataset was unfortunately not available when

this experiment was carried out (see also Section 5.1.2 and Section 3.4.2).

Fortunately, a recently published extension to Stanford University’s NLP toolkit

(de Marneffe et al., 2006) provides a procedure for the straightforward mapping of con-

stituent trees to corresponding dependency graphs using a set of deterministic rules. 1

1Hereafter referred to as the Stanford algorithm.
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. . .

dep dep

monocytes conj and macrophages

Figure 3.1: Using the Stanford algorithm, both semantically-identical tree fragments in

Figure 2.7 map to this graph fragment. Both elements of the conjunction are attached

directly to the parent phrase by the same dependency type, determined by their grammatical

role in the sentence (shown just as dep here). Another dependency between them reflects

their order in the sentence.

This means that any parser that outputs standard syntax trees can be used in place of a

dedicated dependency parser, and therefore the advantages of accuracy, compatibility

and transparent comparability of treebank parsers can be combined with the intuitive

semantic convenience of dependency grammars.

While it is true that dependency graphs typically contain less information than con-

stituent trees, one advantage of this approach over native dependency parsing is that

the constituent trees are still available if they are required as input to NLP algorithms

which rely on them. Constituent trees have been used to tackle such problems as pro-

noun resolution (Ge et al., 1998), labeling phrases with semantic roles such as CAUSE,

EXPERIENCER, RESULT or INSTRUMENT (Gildea and Jurafsky, 2002), automatic

document summarization (Knight and Marcu, 2000), unsupervised lexicon acquisi-

tion (Merlo and Stevenson, 2001), and the assignment of functional category tags like

TEMPORAL, MANNER, LOCATION or PURPOSE to phrases (Blaheta and Charniak,

2000). All of these features may be of use in a fully-featured NLP system, so it is

desirable to retain the original phrase-structure representation of each sentence as well

as the final dependency graph.

There is another useful side-effect of taking such an approach, which circumvents

some of the drawbacks of constituent- and lineage-based evaluation identified in the

Chapter 2. I described in that chapter certain linguistic constructions that vary accord-

ing to the conventions of different parsers or corpora, and which might look like errors

if one were to inspect only the overall accuracy scores, even though the semantics

are identical between the different representations. Examples of these are shown in

Figure 2.7 and Figure 2.8. When converted to dependency graphs using the Stanford

algorithm, many of these insignificant differences are removed; both tree fragments in

Figure 2.7 result in the graph fragment in Figure 3.1, and both in Figure 2.8 result in

Figure 3.2.

This process therefore provides a convenient way to evaluate constituent parsers on

those aspects of their output that most affect meaning, as well as forming a useful inter-
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expressed

dep nsubjpass auxpass

advmod uniquely

. . . mRNA

nn

was

TCF-1

Figure 3.2: Using the Stanford algorithm, both semantically-identical tree fragments in

Figure 2.8 map to this graph fragment. The adverb uniquely is attached directly to the verb

it modifies by an advmod dependency, regardless of whether it was contained within an

unnecessary adverbial phrase constituent.

mediate representation between phrase structure and logical predicates. Furthermore,

given such a framework, it becomes easy to define application-specific evaluation cri-

teria reflecting the requirements that will be placed upon a parser in a biological NLP

scenario. This chapter describes a benchmarking experiment similar to the previous

chapter, but using dependency graphs and biologically-motivated evaluation criteria

defined over dependencies important to the correct interpretation of the biomolecular

interactions in the GENIA corpus. The parsers are scored on their ability to correctly

generate the grammatical dependencies in each sentence, by comparing the correspond-

ing dependency graphs derived from their output and from the constituent structure of

the original treebank. It is a prelude to the following chapter, which presents a biolog-

ical information extraction framework relying on dependency graphs.

3.2 Performance evaluation methodology

Before generating and testing any dependency graphs, I parsed the GENIA treebank

with the parsers in the test set as described in the previous chapter. All pre- and post-

processing stages were performed as described therein; essentially, the overall experi-

mental protocol is very much like that shown in Figure 2.3. The only major difference,

apart from the scoring methods used, was that immediately before comparison and

scoring, all treebanks (GENIA and parser output) were passed to the Stanford algo-

rithm for mapping from phrase structure trees to dependency graphs.
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3.2.1 Building the dependency graphs

I will not discuss this process in detail as it is described thoroughly by de Marneffe

et al. (2006) and in the documentation for the Stanford NLP toolkit. 2 Briefly, it de-

fines a taxonomy of directed, labeled grammatical relations, from the most general

default type, dependent (dep), to highly specific types such as nominal passive subject

(nsubjpass) or phrasal verb particle (prt). A list of these types with the full names

and labels is provided in Appendix C. Each type has a list of allowable source con-

stituents, target constituents and local tree structures that may hold between source and

target; these definitions can include both structural constraints and lexical constraints

(e.g. lists of valid words within the constituents). The algorithm attempts to match the

patterns against the supplied tree structure of a sentence, from most specific to most

general, and when a match is found, a dependency arc is added to the output graph

from the head word of the source constituent to the head word of the target constituent.

(A head word of a constituent is the word that is central to that constituent’s meaning,

upon which all the other words within it ultimately depend; e.g. the head of a verb

phrase is the verb itself, and the head of a noun phrase is the rightmost noun.) The re-

sult of the algorithm is a directed graph for each sentence, with each node representing

a word and each arc representing a grammatical dependency of the appropriate type.

The algorithm also provides the facility to ‘collapse’ graphs into a slightly simpli-

fied form, replacing certain words such as prepositions or possessives with dependen-

cies, and optionally adding extra dependencies that make the semantics of each sen-

tence slightly more explicit (at the expense of making the sentence’s graph potentially

cyclic rather than guaranteed acyclic). When scoring the parsers’ overall performance,

I used the collapsed versions of the dependency graphs with all additional dependencies

added in, as this is the kind of graph one would find most useful in an information ex-

traction project. I also used these versions of the graphs for testing the parsers’ abilities

to attach verb arguments correctly, because in certain situations a verb’s arguments may

not be directly attached to the verb in unprocessed graphs. The other specific subtasks

however used the unmodified graphs as these allowed a more fine-grained analysis of

behaviour.

3.2.2 Scoring measures

For this analysis I used the dependency-based scoring measure � ��� , which is analo-

gous to the F-measure used in the previous chapter:

���� �
�� ���� �����

���� �����

(3.1)

2http://nlp.stanford.edu/software/lex-parser.shtml
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���� (dependency precision) is the proportion of predicted dependencies which are

correct, and ���� (dependency recall) is the proportion of true dependencies which are

predicted.

This chapter uses two variants of the ���� measure, using two criteria for identi-

fying matches between the predicted graphs and the gold standard. Under the loose

matching criterion, a dependency is considered to match if it connects the correct par-

ent node and child node, regardless of its grammatical type. Under the strict criterion,

which is used throughout unless indicated otherwise, the type of the dependency must

match as well. For brevity, individual precision and recall scores are not reported in

this study, since all parsers scored almost exactly the same for precision and recall on

successfully parsed sentences. This suggests that omitted dependencies were usually

replaced with a single erroneous arc.

3.3 Results and discussion

For each parser, I calculated overall ���� scores using several different criteria, for

comparison with the overall scores in Chapter 2. After that, the two highest-scoring

parsers were subjected to a battery of tests designed to analyse their performance on a

variety of biologically- and linguistically-important tasks.

3.3.1 Overall performance comparison

The raw ���� scores for each parser on GENIA are given in Table 3.1. Column 1 uses

the strict matching criterion, and as in Chapter 2, these scores are summed over the

entire corpus rather than averaged per sentence. There is a much clearer separation

between the high-scoring parsers here—the Charniak-Lease parser and the two ver-

sions of the Bikel parser—than when using lineage-based or constituent-based scoring

measures (see Table 2.2). This suggests that these parsers suffered more ‘errors of

convention’ (rather than semantically-important errors) than the other parsers.

Note that the ���� scores given in Table 3.1 Column 1 use the strict criterion for

matching dependencies, where a match is only recorded if an arc with the same par-

ent node, child node and label (dependency type) exists. This is important as the type

of a dependency can be crucial for correct interpretation, discriminating for example

between the subject and direct object of a verb. However, many assessments of depen-

dency parsers use a weaker matching criterion which disregards the dependency type,

and thus only takes into account the topology of the graph and not the arc labels.

For comparison purposes, the mean scores using this weaker untyped criterion are

given in Column 3 (see also the Related Work section). Note that the grouping of the

parsers is similar, with the Bikel and Charniak-Lease parsers ahead with very close

scores. However the vanilla Charniak parser sits between the front-runners and the rest
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���� scores on GENIA (1,757 sentences)

Parser strict criterion strict, ignoring failures loose criterion

Bikel 0.9.8 76.7 76.7 81.2

Bikel 0.9.9c 76.5 76.9 81.0

Charniak 68.7 68.6 78.1

Charniak-Lease 77.1 77.1 81.1

Collins 1 68.0 69.4 72.6

Collins 2 68.3 70.9 72.7

Collins 3 67.1 71.1 71.5

Stanford-lex 66.9 66.9 72.8

Stanford-unlex 68.5 68.5 74.0

Table 3.1: Overall performance scores on the GENIA treebank using dependency graph

comparison.

of the pack, doing much better if dependency types are ignored. All remaining discus-

sion in this paper refers to scores using the strict matching criterion unless otherwise

specified.

As in the previous chapter, the overall effectiveness scores for some of the parsers

are distorted by the fact that they encountered sentences which could not be parsed at

all (see Table 2.2). It is useful to separate out the effects on the mean scores of com-

plete parse failures as opposed to individual errors in successfully-parsed sentences.

The ���� scores in Table 3.1 Column 2 show the mean effectiveness for each parser

averaged only over those sentences which resulted in a successful parse. This reinforces

the lesson from the previous chapter that the Collins parser’s performance is somewhat

hampered by parse failures, but even discounting these failures it is under-performing

compared to the Bikel and Charniak-Lease parsers.

The highest-scoring parsers overall, the Charniak-Lease parser and the Bikel parser,

achieved very similar scores. Therefore, I subjected these two parsers to a series of tests

designed to determine where the strengths and weaknesses of each lay when assessed

on tasks important to biological language processing applications. I used the older

version of the Bikel parser (0.9.8) as it failed on only one sentence, as opposed to two

for version 0.9.9c.

3.3.2 Prepositional phrase attachment

One problem that is frequently cited as hard for parsers is the correct attachment of

prepositional phrases—modifiers attached to nouns or verbs that convey additional in-

formation regarding time, duration, location, manner, cause and so on. It is important

to correctly attach such modifiers as errors can alter the meaning of a sentence con-
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���� scores for prepositions

Parser Modified phrase Modifying phrase

Bikel 0.9.8 78.7 91.6

Charniak-Lease 80.2 90.1

Table 3.2: Parser effectiveness for the task of prepositional attachment.

siderably. For example, consider the phrase Induction of NF-KB during monocyte dif-

ferentiation by HIV type 1 infection. Is it the induction (correct) or the differentiation

(incorrect) which is caused by the infection? Furthermore, the targets of many biolog-

ical interactions are expressed in prepositional phrases, e.g. X binds to Y—the bold

section is a prepositional phrase. However this problem is non-trivial because correct

attachment relies on the use of background knowledge (for humans), or an approxima-

tion of background knowledge based on frequencies of particular words in particular

positions in the training corpus (for parsers). These frequencies are often sparse, and

for previously unseen words (e.g. many of the technical terms in biology) they will be

missing altogether.

To assess the potential impact of this phenomenon, I tested the two best parsers

on their ability to correctly generate dependencies between prepositions and both the

head words of the phrases they modify and the head words of the modifying phrases,

by calculating ���� scores over just these arcs. (The Bikel parser was not penalized for

missing dependencies in the one sentence it failed to parse at all, in any of these tasks.)

For example, in the phrase inducing NF-KB expression in the nuclei , the modifying

phrase of the preposition in is the nuclei—nuclei being the head of this phrase—and

the modified word is inducing. The results are given in Table 3.2. Surprisingly, both

parsers scored slightly higher on the harder portion of this task (attaching prepositions

to the appropriate modified words) than they did across all dependency types, where

both achieved an ���� of around 77 as shown in Table 3.1. On the easier portion

of this task (attaching prepositions to the appropriate modifying words), both scored

considerably higher. Their success on attaching prepositions to the words they modify

ran contrary to my expectations, and indicates that the conventional ‘folk wisdom’ that

prepositional phrase attachment is a particularly hard task is not necessarily true within

the constrained environment of biological texts.

3.3.3 Reconstructing coordinating conjunctions

Another syntactic phenomenon that is problematic for similar reasons is coordinating

conjunction—the joining on an equal footing of two equivalent grammatical units (e.g.

two noun phrases) by a conjunction such as and or or. Since the scope of the con-

junction relies on extra-linguistic knowledge or assumptions, there are often several
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cloned

nsubj aux dobj

We have genes

det

nn nn

nn

GATA-1 the

mouse conj and human

Figure 3.3: This graph is the correct interpretation of the sentence we have cloned the

mouse and human GATA-1 genes. The mouse and human conjuncts are related symmetri-

cally to the genes—the directionality of the dependency between them is just an artifact of

word order. Compare Figure 3.4.

equally grammatical but semantically quite different readings available. An example

of this is given in Figure 3.3 and Figure 3.4. The correct reading (Figure 3.3) refers

to the cloning of GATA-1 genes from mice and from humans—mouse and human are

both attached directly to genes. An alternative, grammatical, yet incorrect reading is

shown in Figure 3.4, where human is attached to genes, but mouse is attached directly

to cloned, implying that some human genes and a whole mouse were cloned.

To measure the ability of the parsers to make the right choices in these situations, I

recalculated the���� score over only those subgraphs (in the parse or the gold standard)

whose root words are at either end of a conjunction dependency. For example, if one

were comparing the incorrect parse in Figure 3.4 to the sentence in Figure 3.3, the

gold standard would consist of all the dependencies from Figure 3.3 that go to or from

the words mouse and human, as these are connected by the conj and conjunction.

The test set would consist of all the dependencies in Figure 3.4 that connect to any

of the words the, mouse, human, GATA-1 and genes, as the conjunction joins the

words mouse and genes upon which the words the, human and GATA-1 depend. True

and false positive counts, and thus precision, recall and ���� can then be calculated

over just these dependencies. It would not be sufficient to compare the conjunction

dependency alone between the two graphs as this would not measure the extent of

this initial error’s consequences. In some circumstances, such as nested coordinations

involving complex multiword phrases—e.g. the octamer site and the Y, X1 and X2

boxes—these consequences can be particularly far-reaching. Both parsers’ scores on

this task (Table 3.3) were slightly lower than their averages of around 77 across all
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We clonednsubj

aux dobj

dobjhave mouse

conj and det

genes

nn nn

the

human GATA-1

Figure 3.4: This graph demonstrates a mis-parse of the sentence in Figure 3.3. It implies

that some human genes, and a mouse, have been cloned.

���� scores for coordinating conjunctions

Parser ����

Bikel 0.9.8 76.0

Charniak-Lease 75.4

Table 3.3: Parser effectiveness for the task of reconstructing subgraphs covered by coordi-

nation structures.

dependency types, but not spectacularly lower.

3.3.4 Detecting negation

Reliably distinguishing between positive and negative assertions and determining the

scope of negation markers are perennial difficulties in NLP, and have been well studied

in the medical informatics context (Goldin and Chapman, 2003; Mutalik et al., 2001).

It is not uncommon in information extraction projects to skip sentences containing

negation words (Domedel-Puig and Wernisch, 2005), but not appears in 10% of the

sentences in my test corpus, and this figure does not count all the other ways of negat-

ing a statement in English. Thus a case should be made for attempting to tackle the

problem in a more methodical way. In order to gain some initial insight into whether

dependency parses might be of use here, I calculated the � ��� score for all dependency

arcs beginning or ending at any of these words: not , n’t , no, none, negative, without ,
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���� scores for negations

Parser ����

Bikel 0.9.8 70.6

Charniak-Lease 81.0

Table 3.4: Parser effectiveness for the task of attaching common negation words.

absence, cannot , fail , failure, never, without , unlikely, exclude, disprove, insignif-

icant . The results (Table 3.4) are encouraging and the use of dependency graphs in

resolving negations warrants further investigation. The difference between these two

parsers is much clearer in this task than in any of the others, and demonstrates that the

Charniak-Lease parser may be particularly suited to tackling this problem, as it scores

higher than its all-dependencies average while the Bikel parser scores considerably

lower.

3.3.5 Verb argument assignment

Although there are uncountably many ways to express most logical predicates in nat-

ural language, molecular biology texts and abstracts in particular are generally rather

constrained and essentially designed for the efficient reporting of sequences of facts,

observations and inferences. As a result, much of the important semantic content in this

genre is encoded in the form of declarative statements, where a main verb expresses

a single predicate more or less exactly, and its syntactic arguments (the subject, direct

object and any indirect or prepositional objects) correspond to the entities over which

the predicate holds. This being the case, it is important that the arguments of content-

bearing verbs are assigned correctly. Failing to recover the subject or object of a verb

will render it less useful—not completely useless, however, since we may like to know

e.g. that X inhibits B cell Ig secretion even if we do not yet know what X is. Further-

more, most important predicates are very much directional, meaning that a confusion

between subject and object at the level of syntax will lead to a disastrous reversal of the

roles of agent and target at the level of semantics. Put more simply, X phosphorylates

Y and Y phosphorylates X are very different statements. Of course, this is not unique

to biological texts but is true of most semantic interpretation tasks.

In order to detect any latent parsing problems that might hinder this process, I

chose one of the most common biological predicate verb in the corpus (induce in any

of its forms) and divided the dependency types that can hold between it and its (non-

prepositional) arguments into two sets: those which one would expect to find linking

it to its agent, and those which one would expect to find linking it to its target. For

example, in the statement Cortivazol significantly induced GR mRNA, Cortivazol is

the agent and GR mRNA is the target. I then calculated an ���� score for each parser
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Parser performance for attachment of arguments to induce

Parser ���� FP FN Mismatches Nonmatches Missing

Bikel 0.9.8 97.5 4 3 1 0 2

Charniak-Lease 98.3 4 1 1 0 0

Table 3.5: Parser effectiveness at assigning the arguments of the verb induce into the correct

category (agent or target). FP = false positives, FN = false negatives, Mismatches = false

negatives where dependencies from the other set were suggested instead, non-matches =

false negatives where dependencies from neither set were offered instead, missing = false

negatives where no substitute dependency was found.

over these dependencies only, counting as a match those which connect the correct

two nodes and which are from the correct set, even if the exact dependency type is

different. For example, if the gold standard contained a nominal subject dependency

(nsubj) between two nodes, and the parse contained a clausal subject dependency

(csubj) in the same place, this would count as a match since both are in the agent

dependencies set. (A nominal subject is a noun phrase which is the subject of a verb,

whereas a clausal subject is an entire clause in the same role, as in whether this is true

remains to be seen.)

The resulting ���� scores are given in Table 3.5, together with a breakdown of false

negatives (recall errors): the numbers of mismatches (substitutions for dependencies

from the other set), non-matches (substitutions for dependencies from neither set), and

completely missing dependencies. The scores for both parsers are very high, with the

Charniak-Lease parser only mis-categorizing one out of 145 instances of arguments

for induce (putting it in the wrong category) and proposing only three other erroneous

arguments for this verb in the whole corpus. These results bode well for the semantic

accuracy of information extraction systems based on these principles.

3.3.6 Error analysis

The importance of correct POS tagging for accurate parsing was mentioned in Chap-

ter 2; the effect of POS errors can be inferred, at quite a gross level, from the difference

in performance between the Charniak-Lease parser, and the other—newer—version of

the Charniak parser which does not have the benefit of biomedical-domain POS tag-

ging. To measure the consequences of POS errors in the context of dependency graphs,

I counted the number of false negatives (recall errors) in the outputs of the two leading

parsers where either one or both of the words which should have been joined by the

missing dependency were incorrectly tagged. (Remember that, since the strict match-

ing criterion is being applied here, a recall error means that a dependency of a specific

type is missing; it will usually be the case that another dependency of a different type
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Reasons for recall errors

Parser 1 bad tag 2 bad tags 1 missing node 2 missing nodes

Bikel 0.9.8 28.7% 3.42% 0.42% 0.00%

Charniak-Lease 20.6% 2.00% 0.39% 0.00%

Table 3.6: Breakdown of missing dependencies caused by POS tagging errors and missing

nodes.

has been substituted.)

Also, in a very small minority of cases, it is possible for nodes to be present in a

dependency graph from the gold standard, but actually missing from the same graph

in a parser’s output, or vice versa. This can occur because punctuation symbols are

not always retained as nodes in the graph in the same way that words are. If a word

is mistakenly treated as a discardable punctuation symbol, it will be omitted from the

dependency graph. This can result from a POS tagging error, an error in the Stanford

algorithm or a mismatch between the conventions used by a parser or the gold standard

and those used by the Stanford algorithm’s developers. Conversely, if a punctuation

symbol is treated as a word for the same reasons, it may be present as a node in its own

right in the resulting graph even if it would otherwise have been suppressed. Therefore,

I also counted the number of missing dependencies in each parser’s output where one

or both of the nodes that the dependency should have connected were also missing.

The results of both of these tests are given in Table 3.6. The results—one in five

missing dependencies being associated with at least one POS error for the Charniak-

Lease parser, and almost one in three for the Bikel parser—should provide all the more

motivation for the development and refinement of biological POS tagging software.

In addition, I counted the missing dependencies for each parser by type, in order to

get an idea of which types were the most problematic. The results (Table 3.7) are rather

interesting. The same five types (out of roughly 50) account for the majority of errors

in both cases, although there is some difference in the relative proportions. One in

five missing dependencies are of the generic dependent (dep) type, which the Stanford

algorithm produces when it cannot match a syntactic construction in a phrase structure

tree to a more specific type of dependency. The presence of large numbers of dep

arcs in the graphs of the gold standard corpus indicates that the GENIA annotators are

using syntactic constructions that are unfamiliar to the Stanford algorithm. On closer

inspection, it became apparent that around one fifth of the dep arcs missed by each

parser had been substituted for more specific dependencies joining the same words; it is

impossible to judge by comparison to GENIA whether the types of these dependencies

are truly correct or not.
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Recall errors by dependency type

Bikel 0.9.8 Charniak-Lease

Dependent 20.4% Dependent 20.8%

Noun compound modifier 11.7% Prepositional modifier 12.2%

Prepositional modifier 11.5% Punctuation 11.6%

Punctuation 10.6% Noun compound modifier 8.1%

Conjunction 7.2% Conjunction 7.9%

Table 3.7: Breakdown of missing dependencies by dependency type (top five types only).

3.4 Concluding remarks

I have presented a method for evaluating treebank parsers based on dependency graphs

that is particularly suitable for analysing their capabilities with respect to semantically-

important tasks crucial to biological information extraction systems. Applying this

method to various versions of four popular, open-source parsers that have been de-

ployed in the bioinformatics domain has produced some interesting and occasionally

surprising results relevant to previous and future NLP projects in this domain.

In terms of overall parse accuracy, the Charniak-Lease parser—a version of the

venerable Charniak parser enhanced with access to a biomedical vocabulary for POS-

tagging purposes—and version 0.9.8 of the Bikel parser achieved joint highest results.

Both parsers relied on good POS tagging to achieve their scores, with large proportions

of the dependency recall errors being attributable to POS errors. An interesting com-

parison can be drawn here between the Charniak-Lease parser, for which just over 20%

of the missing dependencies connect to at least one incorrectly-tagged word, and the

original Charniak parser, which uses a POS-tagging component trained on newspaper

English, and for which almost 60% of the recall errors relate to at least one incorrectly-

tagged word.

Both parsers performed well on tasks simulating the semantic requirements of a

real-world NLP project based on dependency graph analysis, and achieved mostly sim-

ilar scores. The reconstruction of coordinating conjunctions (e.g. and/or constructs)

was slightly more difficult than average for each parser, and the correct attachment of

negation words (e.g. not or without) proved problematic for the Bikel parser, although

the Charniak-Lease parser was more successful on this task. Both parsers identified the

arguments of the verb induce almost perfectly when I relaxed the matching criterion to

allow substitutions between agent-argument dependencies (e.g. nsubj and csubj)

and between target-argument dependencies (e.g. dobj and iobj).

While the overall results of this experiment (Charniak-Lease and Bikel coming out

on top) are not surprising given the results presented in Chapter 2, what is striking is

that the separation between the top parsers and the rest is much clearer when analysing
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their behaviour by dependency rather than by constituent- or lineage-based methods.

The best explanation for this, given that the semantics of a sentence are much ‘closer to

the surface’ when using dependency graphs, is that many of the apparent parse errors

which dragged these parsers’ scores down in the original experiment are in fact illusory

differences of convention that disappear when the transition from tree to graph is made.

It is also interesting that although the Stanford algorithm was developed in parallel

with the Stanford parser, the broad compatibility achieved by using standard PTB-

style constituent trees means that it is not only happy to process the output of any

of these other parsers, but in fact does a better job of producing dependency graphs

when presented with the output of a parser better suited to the biological domain. This

highlights the importance of using common standards for data exchange rather than

in-house formats.

3.4.1 Benefits of dependency graphs

Given that none of the parsers in this evaluation use dependency grammars natively,

one might ask two questions. Firstly, what are the practical advantages of translating

the output of treebank-style constituent parsers into dependency graphs? And secondly,

how do the graphs thus generated compare to the raw output of dependency parsers on

biological texts? I will address the latter question below in the Related Work section.

In answer to the former question, the benefits are manifold and apply to both the eval-

uation process and the engineering of NLP applications.

I hope that the semantic evaluation tasks presented in this chapter demonstrate the

ease by which application-specific benchmarks can be designed and applied with ref-

erence to dependency graphs. Granted, one could conceive of similar phrase-structure

tree-based algorithms to test the positioning of, say, negation words with respect to the

words they modify, but these would require the comparison of two subtrees and would

therefore require much more coding and processing than their dependency equivalents.

Indeed, since several subtrees can result in the same grammatical relation, one would

have to manually account for a degree of allowable variation. Furthermore, some

application-specific tests—such as the analysis of arguments for the verb ‘induce’ in

this experiment—would be impossible using raw constituent trees. This kind of infor-

mation is not explicitly represented in constituent trees, but rather is implicit (albeit

buried rather deeply) in the phrase structures and the rules of English, and to test such

relations from trees alone requires the design and implementation of mapping rules that

would essentially result in local dependency structures anyway.

3.4.2 Related work

The inspiration for this experiment, and its predecessor in Chapter 2, came from the

observation that constituent parsers are beginning to appear in bioinformatics papers

86



on a wide variety of topics, but without any analysis of how well they perform as

isolated components in broader projects. For example, the Bikel parser has been used

to produce rough treebanks for human correction in a biological treebanking initiative

(Bies et al., 2005). Subtrees from the Collins parser have been used as features in a

protein interaction extractor (Xiao et al., 2005) and in a classifier for semantic relations

between biomedical phrases (Rosario and Hearst, 2004). The Charniak parser has been

employed to assist in the re-ranking of search results in a search engine for genomics

documents (Shi et al., 2005) and in the acquisition of causal chains from texts about

protein interactions (Sanchez and Poesio, 2005). The Stanford parser has been used to

provide syntactic clues for identifying key clinical terms in the medical domain (Huang

et al., 2005) and gene and protein names in the biological domain (Finkel et al., 2004).

A thorough analysis of the effectiveness of these parsers in this domain is vital to

identifying the source of errors, to developing workarounds for these errors, and in-

deed to selecting the right parser to begin with. Since the first version of Chapter 2

was published (Clegg and Shepherd, 2005), a few other papers on the benchmarking of

parsers on biological texts have appeared. Lease and Charniak (2005), in introducing

the modified version of the Charniak parser that performed so well here, present some

comparative scores for various versions of the parser on both the GENIA treebank

and the Penn Treebank, but they use constituent-based precision, recall and F-measure

(F�����) and therefore implicitly suffer from the inability of such measures to distin-

guish between differences of meaning and convention discussed in this paper. Their

paper is the most similar to Chapter 2 currently in circulation.

Grover et al. (2005) present several experiments on parsing MEDLINE abstracts

with three hand-crafted grammars. First they show that although the low-coverage

but high-accuracy ANLT parser (Grover et al., 1993) can return a successful parse on

only 39.5% of the sentences in their 79-sentence test set, 77.2% of those sentences

(30.5% overall) were parsed perfectly. This strategy seems somewhat dubious for real-

world applications, however, since a parse with a handful of minor errors is surely

more desirable in practice than no parse at all. The ANLT parser also returns a set

of logical predicates representing the sentence; whether this is more or less useful

for application development than a dependency graph remains to be seen. They then

present some experiments on using the Cass (Abney, 1996) and TSG (Briscoe and

Carroll, 2002) parsers to correctly interpret compound nouns which encode predicate

relationships, differentiating for example between ‘treatment response’ = response TO

treatment, and ‘aerosol administration’ = administration BY aerosol. Their results for

this unique investigation are interesting and encouraging, but it is unfortunate that they

do not apply the ANLT parser to the compound noun task, and conversely, they do not

provide general measures of coverage and accuracy for the Cass and TSG parsers.

Other papers have been published on the behaviour of native dependency parsers

on biomedical text. The paper by Pyysalo et al. (2006a) is perhaps the closest to the
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investigation in this chapter. They compare the free Link Grammar parser (Sleator and

Temperley, 1993) to a commercial parser, the Connexor Machinese Syntax parser, 3

both of which have been used in bioinformatics (Ahmed et al., 2005; Franzén et al.,

2002). The parsers use different dependency grammars, so the authors prepared a

300-sentence protein-protein interaction corpus with a dual annotation scheme that ac-

commodated the major differences between the two parsers’ dependency types. They

also disregarded dependency types, as well as directions, as the Link parser’s ‘links’

are not explicitly directional, resulting in an even looser matching criterion than the

loose criterion used briefly in this paper.

The Link parser can return multiple parses in ranked order of likelihood, and tak-

ing only the first parse for each sentence, it achieved a recall of 72.9%, and parsed

7.0% of sentences perfectly, although the same group shows elsewhere (Tsivtsivadze

et al., 2005) that this figure may be raised slightly by using an independently-trained

re-ranker. The Connexor parser returns a single parse for each sentence; it scored

80.0% for recall and also achieved 7.0% perfect parses. For comparison, our best

parser (Charniak-Lease) achieved an overall recall of 81.0% and parsed an impres-

sive 23.1% of sentences perfectly, even given a slightly stricter dependency matching

criterion. The authors also scored the parsers on their ability to return perfect interac-

tion subgraphs—minimal subgraphs joining two protein names and the word or phrase

stating their interaction—although we disagree that a perfect interaction subgraph is

necessarily a pre-requisite for successful retrieval of an actual interaction. (Neither is

it sufficient, since a negation word might be outside the interaction subgraph yet still

able to completely reverse its meaning.)

Schneider et al. (2004b) present results comparable to my results for the Pro3Gres

parser (Schneider et al., 2004a) on performing several specific syntactic tasks over a

small subset of GENIA. Their general approach is very similar to mine, but they do

not provide performance indicators over all dependency types, and they chunk multi-

word terms into single elements before parsing. They report � ��� scores of 88.5 and

92.0 for identifying the subjects and objects of verbs respectively, although it is not

clear whether or not these relation types are defined as broadly as the categories used

above in the study of the verb ‘induce’, where the Charniak-Lease parser scored 98.0

and the Bikel parser scored 97.0, averaged across both agent and target relations. They

also report ���� scores of 83.5 and 83.0 for prepositional modification of nouns and

verbs respectively, which are slightly better than my best parsers’ scores on this task;

their system contains a module specifically written to correct ambiguous prepositional

phrase attachments. (Note that the ���� scores reported here are calculated from the

individual precision and recall scores given in the original Schneider et al. (2004b)

paper.)

One factor common to Pyysalo et al. (2006a) and Schneider et al. (2004b) is the

3http://www.connexor.com/
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small size of the evaluation datasets (300 and 100 sentences respectively) since both

required the manual preparation of a dependency corpus tailored to the parsers under

inspection. Another advantage of producing dependency parses from constituent parses

is that we can make use of the larger and rapidly-growing body of treebank-annotated

biological text. Since this project was begun, the GENIA treebank has grown from

200 to 500 MEDLINE abstracts, and the BioIE project has released 642 abstracts an-

notated in a similar format. The Stanford algorithm provides a de facto standard for

comparing a variety of constituent parsers and treebanks at the dependency level; if the

dependency parser community were to adopt the same set of grammatical relations as

standard, then native dependency parsers could be compared to constituent parsers and

to biological treebanks fairly and transparently. In response to this suggestion, Pyysalo

et al. (2007b) have adapted their BioInfer corpus (Pyysalo et al., 2007a) to the Stanford

dependency scheme, thus creating the first hand-prepared Stanford evaluation corpus.

The corpus was converted automatically from the original Link Grammar version of

BioInfer using some highly accurate translation rules, but then manually corrected ac-

cording to the consensus of two annotators working in parallel. The authors have made

both the conversion program and the corrected corpus available on their website 4 in

order to encourage the adoption of the Stanford format in the biomedical NLP commu-

nity. Section 5.1.2 contains some more discussion of BioInfer.

The use of dependency graph analysis as an evaluation tool is not a new idea, hav-

ing been discussed by the NLP community for several years, but to the best of my

knowledge the application of such methods to specific problem domains like bioinfor-

matics is a recent development. An early proposal along these lines (Lin, 1995) also

acknowledged that inconsequential differences exist between different dependency rep-

resentations of the same text, and included some suggested ways to exclude these phe-

nomena, although without a comprehensive treatment. While such differences do exist,

I believe that dependency graphs are much less prone to this problem than constituent

trees, given a consistent and logical set of dependency types. The same paper also dis-

cussed the mapping of constituent trees to dependency graphs via phrasal heads; the

Stanford toolkit relies on a more sophisticated version of this process. Its author later

used this approach to evaluate his own MINIPAR dependency parser (Lin, 2003).

Later, the EAGLE and SPARKLE projects used hierarchically-classified grammat-

ical relations, which are comparable to the Stanford toolkit’s dependency types, to

evaluate parsers in several languages (Carroll et al., 1998, 1999; Briscoe et al., 2002).

Similar scoring measures have been proposed for partial parsers (Srinivas et al., 1996;

Kübler and Telljohann, 2002)—those parsers which only return complete syntactic

analyses of parts of each sentence. However, despite the well-known issues with

constituent-based methods and the wealth of research on alternatives such as these,

constituent precision and recall (along with supplementary information like number

4http://www.it.utu.fi/BioInfer/
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of crossing brackets per sentence) remain the de facto standard for reporting parser

accuracy.

Of course, while an essentially syntactic evaluation of parser performance may be

invaluable in choosing a parser to focus one’s research efforts on, and may suggest ways

in which errors can be identified or worked around, the true test of a parser’s usefulness

is its ability to aid in the accurate extraction of biologically-relevant information. The

following chapter provides such a test by putting the Charniak-Lease parser to work in

an information extraction framework.
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Chapter 4

Information extraction from

dependency graphs

One of the primary goals of biological NLP, and a pre-requisite for practical text min-

ing, is automatic information extraction. As discussed in Chapter 1, this refers to the

process of translating a human-readable corpus into structured data for visualization,

querying and mining, or indeed any other computational process. Although a rich

syntactic representation of a sentence is not necessarily required for IE, this chapter

presents an experiment to test the hypothesis that using dependency graphs as an in-

termediate stage can facilitate the extraction of biological interactions from parse trees

and provide a powerful and flexible pipeline from raw text to semantic relations.

The experiment was initially performed in three parts, with three different solutions

to the same problem. Each one was developed after the previous had been evaluated

and all new results had been analysed, so I will present them chronologically, after

describing the LLL Challenge (Learning Language in Logic) which provided the op-

portunity.

4.1 Background

The GENIA corpus has been widely used in biological NLP evaluations because it

contains various different kinds of linguistic annotation—parts of speech, entity names

and types, and constituent structure. However, it is not immediately useful in testing

IE algorithms as there is no annotation of the relationships between the entities in

each sentence, and this is what is usually required of IE applications in this domain.

In order to provide a competitive benchmark for such systems, the LLL Challenge at

the 22nd International Conference on Machine Learning (Nédellec, 2005) provided

participating groups with a set of training sentences drawn from MEDLINE abstracts
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Subtask difficulty matrix for LLL Challenge

Easy sentences Hard sentences Both

Linguistic annotation 4, 5, 6, (6) 5 3, 6

No linguistic annotation 1, 2, 5, (6) 5 (6)

Table 4.1: This table shows which groups (by number, see Table 4.2) submitted official runs

to which versions of the challenge. The top-left cell represents the easiest, the bottom-right

the hardest. (6) indicates Group 6’s unofficial results that were reported nonetheless.

on transcription in Bacillus subtilis. Each sentence was annotated by the organizers

with a set of ordered tuples representing the pairs of interacting genes and proteins

described therein; the causal agent and target of each interaction was marked as such. A

test set was also provided, with sentences on the same subject, but with the annotations

withheld.

The goal of the challenge was to retrieve the interactions described in the test set,

using an algorithm trained on the training set. For example, given the sentence Both

SigK and GerE were essential for ykvP expression, the correct answer would con-

sist of two tuples, where the first entity in each tuple is the agent: SigK�ykvP and

GerE�ykvP. The interactions in the training set fell into three categories: genetic reg-

ulatory relationships where no physical mechanism is specified (68%), direct physical

interactions such as promoter binding (25%), and relationships implied by member-

ship of a regulon (7%). According to the task guidelines, these relative proportions

were similar in the test set, but 50% of the test set sentences had no interactions in

(unlike the training set where every sentence had at least one).

4.1.1 Organization of the LLL Challenge

The training data was split into two sets. Each sentence in the harder set of sentences

contained more difficult linguistic phenomena like coreference, where for example a

gene might be referred to indirectly elsewhere in the sentence by a pronoun like it .

The easier set did not contain such constructions. The test data contained both types

of sentence mixed together, but each group could declare whether they had trained on

the easier set, the harder set or both together, and be assessed accordingly on only the

corresponding sentences from the test set. The hardest option was both together, since

no particular optimization for either sort was possible. This most closely reflects the

situation of a real application, as there is no oracular way to determine the composition

of an incoming sentence without actually analysing it.

As well as the basic annotation for the training set containing interaction tuples, the

organizers provided a more sophisticated annotation file for each dataset (training and

test). These contained syntactic structure information for each sentence, provided by
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Groups in the LLL Challenge

Number Affiliation Reference

1 Humboldt U./EBI Hakenberg et al. (2005)

2 U. Sheffield Greenwood et al. (2005)

3 U. Amsterdam Katrenko et al. (2005)

4 U. Brno Popelı́nský and Blaťák (2005)

5 U. Madison Goadrich et al. (2005)

6 U. Edinburgh Riedel and Klein (2005)

Table 4.2: The groups competing in the LLL Challenge; for brevity I will refer to them by

their numbers throughout.

the Link Grammar parser (Sleator and Temperley, 1993), but checked, simplified and

corrected by hand. They also provided lemmas for each word—a lemma is the canoni-

cal form of a word, e.g. regulate for regulates or regulated , or mouse for mice. These

were also manually corrected. It was left up to each group to use or ignore this informa-

tion; obviously ignoring it leads to a more realistic test since in a live system the only

linguistic data comes from one’s own noisy analyses. With three choices of sentence

set, and the option to use or ignore the linguistic annotations, the competition actually

decomposed into six distinct subtasks with results that were not directly comparable

(Table 4.1). Each group was allowed to enter multiple runs if they desired, although

only the highest in each subtask would be counted as official. However Group 6 also

recorded several unofficial runs in their report, fortuitously, since (as we shall see) the

unofficial scores provide an extra angle of analysis. This is very helpful, since the pro-

fusion of subtasks, and the reluctance of many of the teams to tackle the harder ones,

would hamper attempts at in-depth analysis otherwise. Also, if it wasn’t for Group 6’s

late entry, there would have been no result at all on the hardest task and thus nothing to

compare my own algorithms to.

4.1.2 Results of the LLL Challenge

The contestants in the challenge were scored on precision (� , the proportion of pre-

dicted interactions that were correct), recall (�, the portion of genuine interactions that

were predicted) and F-measure (� , the harmonic mean of the previous two scores).

These measures are analogous to those used in the previous two chapters, but are now

measuring semantic rather than syntactic accuracy. I have summarized the scores for

the LLL contestants in Table 4.3, putting them in descending order of F-measure. The

results are rather striking. The top five runs belong to Group 6, and although the win-

ning run used the easy sentences with linguistic annotation, second and third places go

to runs that processed both kinds. The only other group that attempted this, Group 3,
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Results of the LLL Challenge

Sentences Annotations Group/Run � � �

easy yes 6a 65.0 72.2 68.4

both yes 6b 63.2 66.2 64.7

both yes 6c 55.6 53.0 54.3

easy no 6d 68.5 44.4 53.9

easy yes 6e 60.9 46.2 52.6

easy no 1 50.0 53.8 51.8

easy yes 4 37.9 55.5 45.1

both no 6f 50.0 33.7 40.2

easy no 5a 25.0 81.4 38.2

easy yes 5b 20.5 90.7 33.4

both yes 3 51.8 16.8 25.4

hard yes 5c 14.0 93.1 24.4

hard no 5d 14.0 82.7 24.0

easy no 2 10.6 98.1 19.1

Table 4.3: The results of the LLL Challenge, in descending order of F-measure.

are ranked 11th out of 14, with comparable precision but half the recall of the lowest-

ranking Group 6 run—despite the fact that Group 3 used the additional annotations for

the mixed sentence set, but the Group 6 bottom run didn’t. The approaches and results

of each of the teams are discussed below.

Group 1

Group 1 began by POS-tagging the data (training and test), and then tagging gene/protein

names and interaction keywords (activation, inhibits) by dictionary matching. This

resulted in a sequence of tags representing each sentence. They tried two methods

for learning patterns characteristic of genuine relationships from the training data and

matching these patterns to unseen sentences. The first used multiple sequence align-

ment techniques with weighted substitution matrices for the tags, and performed poorly.

The second used a genetic algorithm to evolve finite state automata encoding sequences

of tags, using their ability to match to the training data as the fitness function. The best

of the second method’s runs was submitted (see Table 4.3).

Neither approach used any syntactic information at all, treating sentences and phrases

as simply linear sequences of tags. They did not attempt to tackle the hard sentences

with coreference and other difficult constructions. The authors suggested that more

training patterns would have helped with coverage, and syntactic information could

have improved their system’s ability to get the agent and target the correct way round—
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this was a particular problem.

Group 2

Group 2 parsed the training set with MINIPAR (Lin, 2003), a dependency parser which

produces grammatically-labeled graphs similar to Stanford’s (see Chapter 3), and ex-

tracted patterns (graph fragments) containing pairs of gene/protein entities. (The man-

ual syntactic annotations supplied by the organizers were not used.) After parsing, they

used an iterative learning algorithm, starting with a manually-selected set of eight seed

patterns, to select an optimal subset of patterns which discriminate between (ordered)

pairs of entities that do interact and pairs that don’t. This worked by iteratively adding

new patterns from the candidate set by selecting those most similar to the patterns in

the working set which perform well on the training data. After parsing the test data,

they used the patterns derived in the training stage to classify each pair of entities as

interacting or not. Unfortunately, this was not successful, despite attempting only the

easier sentences. The best attempt scored � = 21.6 and � = 14.8 for an overall � =

17.5.

The authors concluded that the limited number of training sentences adversely af-

fected their algorithm, noticing that none of the original eight seed patterns (chosen for

their apparent discriminatory power) actually matched any interactions in the test set.

Also, the patterns were not generalized from the training examples, but lifted node-

for-node and arc-for-arc, although words were replaced with their lemmas (canonical

forms), e.g. repress for represses, repressed etc. They suggested that an approach al-

lowing substitutions between words with similar meaning would do better. They also

speculated that MINIPAR errors may have been a contributory factor, but made no

attempts to quantify this effect.

Group 2 also generated a baseline set of predictions consisting of two interactions

for every pair of genes/proteins that occur in the same sentence (one for each agent-

target direction). This scored a higher � than their other method, on account of its

near-perfect recall, and became their official submitted result (see Table 4.3). It did not

score 100% recall because a small number of sentences in LLL describe more than one

interaction between the same agent and target; the LLL scoring criteria expect these to

be reported individually.

Group 3

Group 3’s approach was based on generating sets of logical predicates in Prolog which

described the words in the training set, and the relations between them, at the lexical,

syntactic and semantic levels. The syntactic information was drawn from the manual

Link annotations supplied by the organizers, and the semantic information by reference

to a small domain-specific ontology prepared by Group 3 themselves. They then used
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a rule induction algorithm to learn a set of rules for distinguishing between interacting

and non-interacting pairs of entities, based on unifying parts of the logical structures

inferred from the training set.

Their results were somewhat mediocre, although after fixing a bug present in the

submitted run, their F-measure rose from the 25.4 shown in Table 4.3 to 31.6. They

trained and tested on both the easy and hard sentence sets together, which may have

impaired their algorithm’s effectiveness, but their paper contains no error analysis or

even speculation about causes of error.

Group 4

Group 4 took a similar approach to Group 3, experimenting with various rule induction

methods to learn discriminatory patterns of rules from logical predicates describing the

training data. They only attempted the easy sentences, and used the manual syntactic

annotations in the training set, along with automatically-generated POS tags and word-

synonym relations. Their submitted run scored � = 45.1, although the best run reported

in their paper (using a rule induction algorithm called Aleph) scored � = 48.2.

Group 5

Group 5 also used the Aleph algorithm, along with another learning algorithm called

Gleaner, to learn combinations of features from the training set which were more likely

to be present in genuine interactions than false positives. The features were based on

the words themselves, POS tags derived using a standard English tagger, non-nested

phrase boundaries from a shallow parser, orthographic and word-frequency features,

and the presence of words in an external biomedical ontology. They also incorporated

the hand-corrected parses from the organizers in certain runs, although it is not clear

from their description that they were aware that this information was manually edited.

They attempted both subsets of sentences, albeit separately, rather than together. In-

terestingly, their best result overall (5a, on the easy sentences) did not use the manually-

corrected syntactic data. The authors did not speculate about the causes of the large

drop in precision which caused the run using the Link structures performed worse.

They did, however, identify difficulties distinguishing agents from targets as a particu-

lar problem, as well as a lack of non-interacting examples in the training data.

Group 6

Group 6’s approach was based on Markov logic (Domingos et al., 2006), an induc-

tive model based on weighted logical clauses describing features of the training data.

These features were extracted from the syntactic and semantic pathways connecting

each interacting pair of entities in the training set. The syntactic pathway between a
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pair of entities was simply the shortest route between them on the Link structure sup-

plied by the organizers. The semantic pathway was obtained by parsing the sentences

with a Combinatory Categorial Grammar (CCG) parser (Clark and Curran, 2004) and

then feeding the parser’s output into a program called ccg2sem (Bos, 2005) which pro-

duced a logical representation of the semantic structure of the sentence. Their hope was

that certain normalizing effects of the conversion into logical form (e.g. coreference

resolution) would make the Markov logic network’s job easier.

The runs using the CCG parser, therefore, did not use any of the Link graph struc-

tures (or any of the other hand annotations). I have included Group 6’s official late

submissions (6a, b, d, f) as well as their official runs (6c, e) because their unofficial run

6f was the only attempt made at the hardest version of the task (all sentences together,

no hand annotations) and was therefore my target to beat.

The dominance of the score chart by Group 6 certainly reflects well on the ability of

Markov logics to generalize successfully from relatively small amounts of data, com-

pared to the various learning methods used by the other teams. Their top-scoring entry

(6a) contains an interesting lesson too. They entered it after the close of the competition

in order to test the hypothesis that adding negative examples to the model—syntactic

and semantic chunks from the paths between genes that didn’t interact—would help

its discriminatory power. The hypothesis was validated; an earlier run (not shown in

table), which used the same clause set as 6a but without the negative clauses, scored

4 points less on precision and an impressive 20 less on recall. It may seem counter-

intuitive that training on negative examples can boost recall, but apparently they can be

“highly confident that a gene pair is ‘not a non-interaction’ while positive clauses are

uncertain.” (Riedel and Klein, 2005)

One point must be made, however, in response to these results. While Group 6 did

thoroughly outperform the rest of the teams, there is a considerable gulf between 6a,

which used the hand-corrected Link parses, and their worst performer (6f) which only

used the semantic relations they had parsed and extracted themselves. Much of the

middle ground consists of runs that used both (6b, c, e). Expending effort to optimize

an algorithm for specific situations makes sense only if those situations are ever likely

to occur ‘in the wild’, but the data that allowed 6a to achieve � = 68.4 is not just hand-

corrected but simplified compared to an actual Link parse. The Link Grammar uses

over a hundred link types1 whereas the LLL equivalent uses 27.2 A discussion of the

effects of negative clauses on the model driven only by real data would have been a

more interesting and realistic evaluation.

1http://www.link.cs.cmu.edu/link/dict/summarize-links.html
2http://data.jouy.inra.fr/unites/mig/text/LLLChalenge05/doc/

Relations_Definitions.pdf
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4.2 Algorithm I

The LLL organizers did not release their test set answers after the challenge, so that

they could be kept aside for completely blind testing; all evaluation during and after

the challenge took place via their online scoring system. 3 Using this opportunity, I

decided to build a prototype extraction algorithm based on the Charniak-Lease parser

and the Stanford dependency graphs described in the previous chapter, eschewing the

use of the linguistic annotations supplied with the corpus and testing on the combined

sentence set only. I had no desire to spend any time performance-tuning for a grammar

I don’t use, and there is no point giving a new technology an easy ride at the proof-of-

concept stage. The LLL data is already slightly artificial as there are no relationships

between more than two entities (although there are plenty of cases where an entity is

involved in more than one) or reciprocal interactions without a clear agent/target dis-

tinction. Also, the entity list supplied is exhaustive and unambiguous, meaning the

gene and protein names are effectively already marked. However, this is not as big an

issue with the quite distinctive nomenclature of B. subtilis as it would be with, for ex-

ample, D. melanogaster whose gene names and symbols are notorious for overlapping

with English words: an, by, for, limited , reduced, similar (Hirschman et al., 2002).

However, practicality invariably demands some constraints, especially for small-scale,

short-term initiatives.

The very variable performance of most of the groups, even on the easier subtasks,

indicated that the task would not be trivial. One possible reason for the mediocre over-

all performance during the challenge might be a shortage of training data. Only 77

sentences were supplied for this purpose, and those teams that wanted to tackle the

sentence types individually had even less to use for each type (55 easy and 22 hard).

Despite this paucity of data, all of the teams based their approaches on the automatic

induction of extraction patterns of one kind or another. In order to differentiate my

approach from those used in the challenge and reduce the impact of the training data

limitations, I decided to start with a simple heuristic based on intuitive assumptions

about the task, and use the training data only to fine-tune its behaviour on example sen-

tences. At the core of my approach is a fairly straightforward graph traversal algorithm,

but its behaviour is flexible and widely parameterized.

4.2.1 Methods

The algorithm was designed to make an initial pass by graph traversal, and then three

recovery passes to deal with cases where the initial pass found a likely interaction but

failed to assign entities. The aim was to achieve high-precision results with the first

pass, then increase recall with each successive pass until the desired balance between

3http://genome.jouy.inra.fr/texte/LLLchallenge/scoringService.php

98



recall and precision was reached. As many design decisions as possible were parame-

terized rather than hard-coded, and the LLL training data was used instead as a tuneset

to pick an optimal (or near-optimal) set of parameters to use on the test set. The trade-

off between precision and recall is a key concept in information extraction, and many

of the algorithm’s parameters were designed with this balance in mind. For example,

a parameter like removeNegatives (see below) would be expected to restrict the num-

ber of candidate entity pairs that are marked as interacting and thus tend to increase

precision at the risk of reducing recall.

Other parameters were introduced without any firm expectations as to their effect

upon precision and recall. All of the passes after the first make use of multi-valued

parameters called selectors and restrictors. A selector enables the algorithm to choose

a candidate entity for a role (agent or target) based on its position in the sentence,

and a restrictor governs whether this candidate will be admitted or not in the role for

which it has been chosen. These are brought into play at various stages when it has

been impossible to determine an agent and/or target for an interaction using graph-

based methods alone. As the frequencies and locations of such ‘difficult’ entities in the

sentences of the dataset was not known in advance, these decision-making processes

were parameterized so that any useful patterns in these phenomena could be determined

empirically.

Finally, some constraints were introduced in response to common causes of error

that were identified during the early development of the algorithm, for example ban-

SymmetricalSubgraphs and removeNegatives. These were parameterized rather than

hard-coded as it is difficult to predict how they will interact with the other parameters

and whether they will work best if applied repeatedly or simply checked at one or two

key points in the process. As we will see, the amount of linguistic input into the design

of this algorithm was fairly minimal, with the structure of the graphs much more impor-

tant than the labels on the arcs, and the POS tags ignored completely. Rather, the idea

was to get a prototype system working to test the basic principles of the dependency

graph framework and to use as a frame of reference for other techniques.

Algorithm I’s approach makes extensive use of concept of interaction subgraphs

(see Figure 4.1 for examples):

“The interaction subgraph for an interaction between two proteins� and�

in a dependency parse � is the minimal connected subgraph of � that con-

tains �, �, and the word or phrase that states their interaction.” (Pyysalo

et al., 2006a)

In this task, most of the interacting entities are genes rather than proteins, but the

principle is the same, although I did further constrain the definition to include only

those where the interaction word is at the root. I constructed a lexicon of interaction

words that are likely to indicate that an interaction is being described, based on manual
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nsubj prep on

Expression

prep of

gerE

gene

det nn amod

the cwlH sigma(K)-dependent

Figure 4.1: This graph of the sentence Expression of the sigma(K)-dependent cwlH

gene depended on gerE contains several candidate interaction subgraphs, which over-

lap. An interaction subgraph connects two entities at its leaves via an interaction key-

word at its root, and Expression and depended are both interaction keywords. There-

fore, cwlH:Expression:sigma(K) , cwlH:depended:sigma(K) , cwlH:depended:gerE and

sigma(K):depended:gerE all make up interaction subgraphs, as do their inverses (e.g.

gerE:depended:sigma(K)) since relationships in this task are directional. Furthermore, un-

less these cases are removed by filtering rules in post-processing (see below), reflexive

subgraphs like gerE:depended:gerE are also allowed, giving a total of 13 potential candi-

date entity pairs.

inspection of the training set and extrapolation based on past experience. This included

verbs (in various forms) such as bind , phosphorylates and stimulated , nouns such as

expression, target and repressor, and various other keywords such as dependent . In

addition to the notion of interaction subgraphs, Algorithm I also makes use of the

following concepts:

Interaction triplet: The interaction triplet for an interaction between two genes/prot-

eins � (agent) and � (target) via an interaction word � is the ordered tuple �� � � �.

I use this concept because later passes of the algorithm allow nodes to take part in an

interaction even though they do not form a subgraph.

Dependency path: A route from node � to node � in a dependency graph of a

sentence, consisting of all the arcs and nodes between � and � (inclusive) in order.

Note that there may be more than one dependency path from � to �. Note also that

the arcs in a dependency graph are directional, so a path from � to � is not also a path

from � to �. The direction from parent node to child node is referred to hereafter as

‘downstream’.

Contradiction: In the context of this algorithm, ‘contradiction’ refers specifically
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to cases where the same pair of entities has been marked as interacting twice, with one

entity as the agent in one case, and the other as the agent in the other case. This can

occur between two passes of the algorithm, or within one pass. Because in reality this

is very rare, the algorithm includes several optional rules to resolve such cases, which

are controlled by various parameters described below.

Before listing the parameters which affect the behaviour of Algorithm I, I will

describe the data preparation stages. At the end of the Methods subsection, before

the results are presented, there is a graphical overview of the experimental protocol

(Figure 4.4), including pre- and post-processing of the data and configuration of the

algorithm itself, which the reader may find useful.

Data preparation

Given that the test data was split equally between sentences with interactions and sen-

tences without interactions, but the training sentences all contained interactions, the

first step was to acquire negative examples to add to the training data so that the im-

pact of sentences without interactions on precision could be judged more accurately.

The data was obtained by querying MEDLINE with the terms Bacillus subtilis and

transcription, restricting the results to articles which were published after the LLL

Challenge workshop took place in August 2005. It was split into sentences and the

sentences were shuffled randomly, after which the first 77 which did not describe inter-

actions were manually selected and added to the training set.

A thesaurus of gene/protein names used in the challenge was supplied by the orga-

nizers, mapping all of the aliases for each entity to a canonical name. None of these

were ambiguous with each other or with general English words, meaning that all entity

names could be tagged trivially in both the training and test sets with no ambiguity. I

replaced each gene/protein name in each set with a symbol of the form Entityxx,

where the last two characters are a two-letter code unique to that name, using a simple

search-and-replace on the training data. This had several advantages. Firstly, some of

the original names were in several word tokens, which would make extracting them

from dependency graphs much more complicated. Ensuring that they were all single

tokens meant that no entity would be split over more than one node in the graphs.

Secondly, the numeric characters in some of the original entity names meant that the

Charniak-Lease parser tagged them as numbers rather than nouns, thus altering the

syntactic structure of the sentence context and obscuring interpretation. Finally, de-

coupling the interaction extraction from the entity recognition meant that it would be

more straightforward to adapt the extraction algorithm to other datasets where a more

sophisticated named entity recognition strategy would be necessary. Ongoing experi-

ments with MSc students using unannotated data have borne this out.

The expanded training set and the test set were parsed with the Charniak-Lease
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parser (Lease and Charniak, 2005) on account of its proven accuracy on biomedical

text (see Chapter 2 and Chapter 3). Then the resulting parse trees were tagged with

a grammatical function tagger (see Blaheta and Charniak, 2000, and Section 1.9.4)

before being converted into dependency graphs. A function tagger is a program that

can assign additional descriptive suffixes to certain phrase labels in parse trees, for

example -TMP and -LOC for temporal and location modifiers respectively—phrases

that describe when or where something is taking place—or -LGS for the logical subject

of a passive-voice sentence. The Stanford tools can use these as hints when performing

the tree�graph conversion, but they were not used in the experiment in Chapter 3

because the Blaheta and Charniak function tagger (apparently the only one available)

is highly sensitive to small details of the parser’s output format and as a result only

works on parsers from the Charniak family.

The dependency graphs were generated with the ‘collapsing’, ‘CC processing’ and

‘extra dependencies’ options (see de Marneffe et al. (2006) and the documentation for

Stanford’s GrammaticalStructure class included with their software distribu-

tion4). This primarily meant that: preposition nodes were replaced with typed prepo-

sition dependencies from the head of the modified phrase to the head of the modifying

phrase; the elements of coordinating conjunctions were attached in parallel to the word

governing the coordination; and pronouns in relative clauses were replaced, where pos-

sible, with the referents from the parent clause in the argument positions of the relative

clause’s verb. For example, in the sentence I saw the man who loves you, an extra de-

pendency will be added to indicate that man is logically the subject of loves. All these

transformations are designed to bring the semantics of the sentence slightly closer to

the surface in order to facilitate interpretation.

A summary of the steps involved in preparing and processing the data is presented

in Figure 4.4.

Global parameters

The details of the individual passes of the algorithm, and the parameters governing their

behaviour, are described below; however, the algorithm also provides several global

parameters that can affect more than one pass.

banReflexives: If set, interactions where the agent and target refer to the same en-

tity are filtered out, unless there is a clue word in the sentence that indicates a reflexive

relationship may be under discussion (auto-, self- or itself ). Note that this parame-

ter covers cases where the agent and target are different instances (‘mentions’) of the

same entity, as well as those where the exact same node in the sentence graph has been

used as agent and target of an interaction. Thus, it is a more general constraint than

banIdentityTriplets (see below).

4http://nlp.stanford.edu/software/lex-parser.shtml

102



banSymmetricalSubgraphs: If set, the algorithm filters out interaction subgraphs

where the sequence of arc labels from the interaction word to the agent (if applicable)

is the same as the sequence from the interaction word to the target.

banIdentityTriplets: If set, interactions where the agent and the target are the same

node are filtered out.

removeNegatives: If set, interactions where a negation word is found in the depen-

dency path from the interaction word to either of the agent or target nodes are filtered

out; likewise if the negator is directly attached (upstream or downstream) to any node

in the path. Negation words include not , no, none, negative, never, without , absence,

cannot etc.

resolveContradictionsBetweenPasses: If set, the agentSelectorContradiction-

BetweenResolver parameter (below) is used to choose between two interactions from

different passes that contradict each other (i.e. one pass reports X�Y, another reports

Y�X). If not set, both are admitted.

agentSelectorContradictionBetweenResolver: When two contradictory interac-

tions are reported by different passes, and the previous parameter is set, the one whose

agent meets the criteria determined by this parameter will be chosen. WORD FURTH-

EST, WORD NEAREST,LEFTMOST,RIGHTMOST,PASS EARLIER andPASS LAT-

ER are the allowable values. WORD FURTHEST and WORD NEAREST refer to the

distance in words from the interaction word; e.g. if WORD NEAREST is set, the in-

teraction whose agent is closest to the interaction keyword will be chosen. Ties are

broken by pass precedence, with interactions from earlier passes winning. LEFTMOST

and RIGHTMOST simply indicate absolute position in the sentence. PASS EARLIER

means interactions from earlier passes win, PASS LATER is the opposite.

resolveContradictionsWithinPasses: If set, the agentSelectorContradictionWith-

inResolver parameter (below) is used to choose between two interactions from the

same pass that contradict each other. If not set, both are admitted.

agentSelectorContradictionWithinResolver: In the case of two contradictory in-

teractions from the same pass, the one whose agent meets the criteria determined by

this parameter will be chosen. WORD FURTHEST, WORD NEAREST, LEFTMOST and

RIGHTMOST are the allowable values; the definitions of these are as above. Ties are

broken randomly.

First pass

The first pass is the core of the algorithm, and is required for a minimum base level

of operation. It begins by locating interaction words in the sentence. Then for each

of these, the algorithm traverses the dependency graph in the downstream direction

in order to find any entities that can form candidate interaction subgraphs with the

keyword (as described in Figure 4.1). If suitable entities are found, this is taken as
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evidence that a genuine interaction is being described in the sentence, and the entities

become potential agents and targets for the interaction. The algorithm does not restrict

itself to looking for just a single agent and target for each interaction; every pair of

accessible entities is considered, unless invalidated by one of the rules below. A set of

dependency types characteristic of causal agents are used to assign each entity to the

agent or target role of the interaction. For each valid agent/target pair for the interaction

word, an interaction subgraph is formed with the interaction word at its root, and from

this a new interaction triplet is created. The details of this process are governed by the

following parameters.

deepSearchAgentsFirstPass: If set, an entity whose path from the interaction

word contains a dependency type characteristic of the agent role at any point is classi-

fied as an agent.

lateSearchAgentsFirstPass: If deepSearchAgentsFirstPass is not set, and this

parameter is, the algorithm requires that a dependency type characteristic of the agent

role is present on the last arc in the path from the interaction keyword to a given entity,

in order for that entity to qualify as an agent.

If neither of the above parameters are set, the algorithm only considers the depen-

dency type of the first arc in the path from the interaction keyword to the entity, when

choosing agents for the interaction keyword. This is illustrated in Figure 4.2.

deepSearchTargetsFirstPass: If set, an entity whose path from the interaction

word contains no dependency types characteristic of the agent role at any point is

classified as a target.

lateSearchTargetsFirstPass: If deepSearchTargetsFirstPass is not set, and this

parameter is, the algorithm requires that no dependency type characteristic of the agent

role is present on the last arc in the path from the interaction keyword to a given entity,

in order for that entity to qualify as a target.

As with deepSearchAgentsFirstPass and lateSearchAgentsFirstPass, if neither

of these parameters is set, the critical arc on the path to a candidate target is the nearest

one to the interaction keyword. However:

banAgentsAsTargets: If this is not set, the state of the previous two parameters

is ignored, and any entity downstream of the interaction keyword is a valid target,

regardless of the presence of agent-like dependencies in the paths from the keyword.

It should be clear then that picking targets for an interaction is easier than picking

agents, as the dependency types that characterize the agent role are in a minority, and

the target selection process has the option of performing no filtering at all on depen-

dency types. The design of the second pass (see below) reflects this fact.

haltSearchAgentsFirstPass: If set, only the first agent entity found along a given

dependency path will be admissible. If not set, multiple agents along the same path

will be allowed.

haltSearchTargetsFirstPass: The counterpart of the previous parameter; if set,
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Figure 4.2: This graph of the sentence ykuD was transcribed by SigK RNA polymerase

from T4 of sporulation illustrates the agent selection process in the first pass. It contains

one interaction keyword, transcribed , and two entities which can form an interaction sub-

graph. The syntactic dependency type agent, used for the by-complement of passive

verbs, is (unsurprisingly) one of the dependency types characteristic of the semantic agent

role, so its presence can be used to identify SigK as the agent of the interaction rather than

ykuD. However, if lateSearchAgentsFirstPass is set (and deepSearchAgentsFirstPass

isn’t) the algorithm will only look at the dependency immediately governing each candi-

date entity when trying to assign the agent role. In this case, that is nn (noun compound

modifier), which is not characteristic of the agent role; the first pass will thus be unable

to determine which of the entities is the agent. Note that there is an error in this graph,

because the parser has chosen to attach from T4 of sporulation to polymerase, and not

to transcribed , which it really modifies; fortunately this does not affect the algorithm’s

interpretation.

only the first target entity found along a given dependency path will be admissible. If

not set, multiple targets along the same path will be allowed. See Figure 4.3 for an

illustrative example.

filterTripletsAfterFirstPass: If set, the global filtering criteria defined by ban-

IdentityTriplets, banSymmetricalSubgraphs and removeNegatives will be applied

after the first pass completes.

Second pass

The second pass operates on those interaction keywords which have multiple candi-

date targets from the first pass, but for which the first pass has been unable to identify

an agent. It was introduced because the criteria in the first pass for selecting agents

are much narrower than those for identifying targets, and parse errors and complex
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Figure 4.3: This graph of the sentence the GerE protein inhibits transcription in vitro of

the sigK gene encoding sigmaK demonstrates the principles of the haltSearchTargets-

FirstPass parameter. The dependency types have been left off this diagram for simplicity

because they are not relevant here; assume that the algorithm has already identified GerE

as the agent of inhibits, and sigK and sigmaK as targets. However, if haltSearchTargets-

FirstPass is set, then sigK will be disallowed from acting in this role, as to get to it from

inhibits by graph traversal is impossible without crossing sigmaK which would be a breach

of the halting condition. In this case, this strategy makes little practical difference; since

the LLL dataset does not distinguish between genes and their products, sigK and sigmaK

are interchangeable, but such things are not considered at the graph traversal stage. There

are two significant but not catastrophic parse errors evident in the structure of this graph,

but as they do not make this demonstration of search halting any less valid, identifying

them is left as an exercise to the reader.

phrase structures can exacerbate this. Based on the following parameters, the algo-

rithm attempts to reassign one of the candidate targets as an agent, thus creating a new

interaction triplet between the new agent and each of the remaining targets.

doSecondPass: This controls whether the second pass is run at all.

agentSelectorSecondPass: Allowable values are the same as for agentSelector-

ContradictionResolver, together with values GRAPH FURTHEST and GRAPH NEAR-

ESTwhich refer to the distance in arc ‘hops’ from the interaction word. This parameter

is used to select an agent from the candidate targets (ties are broken randomly), pro-

vided the criterion specified by the next parameter is met.

agentRestrictorSecondPass: Allowable values are BEFORE,AFTER andEITHER.

If this is set to BEFORE or AFTER, the candidate agent will be admissible only if it is

before or after the interaction word in sentence word order respectively. If the entity

selected according to the previous parameter is inaccessible because of this one, no

agent is returned; the selected entity is returned to the pool of targets.
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filterTripletsAfterSecondPass: If set, the global filtering criteria defined by ban-

IdentityTriplets, banSymmetricalSubgraphs and removeNegatives will be applied

after the second pass completes.

Third pass

The third pass operates on those interaction words which have at least one candidate

target from the first pass, but for which the first and second passes have been unable

to identify an agent. The algorithm attempts to identify a plausible agent from any of

the entities in the sentence, apart from those which are already marked as targets for

this interaction word, regardless of whether or not they are accessible by downstream

graph traversal from the interaction word. The process is governed by the following

parameters.

doThirdPass: This controls whether the third pass is run at all.

agentSelectorThirdPass: Allowable values are WORD FURTHEST, WORD NEAR-

EST, LEFTMOST and RIGHTMOST. GRAPH FURTHEST and GRAPH NEAREST are

not allowed because graph traversal is not used in this pass.

agentRestrictorThirdPass: Allowable values are BEFORE, AFTER and EITHER,

as in agentRestrictorSecondPass. As before, if the entity selected according to the

previous parameter is overruled by this parameter, no agent is returned.

filterTripletsAfterThirdPass: If set, the global filtering criteria defined by ban-

IdentityTriplets, banSymmetricalSubgraphs and removeNegatives will be applied

after the third pass completes.

Fourth pass

The fourth pass is a final fallback stage for interaction words for which neither an agent

nor a target has been identified by any of the previous passes. It attempts to assign an

agent and a target from anywhere else in the sentence, regardless of graph connectivity,

based on the following parameters.

doFourthPass: This controls whether the fourth pass is run at all.

agentSelectorFourthPass: Allowable values are WORD FURTHEST,WORD NEAR-

EST, LEFTMOST and RIGHTMOST, as in agentSelectorThirdPass.

agentRestrictorFourthPass: Allowable values are BEFORE,AFTER and EITHER,

as in agentRestrictorThirdPass.

targetSelectorFourthPass: This parameter takes the same values as agentSelec-

torFourthPass, but governs the search for a target of the interaction rather than an

agent.

targetRestrictorFourthPass: This parameter takes the same values as agentRe-

strictorFourthPass, but again governs the search for a target.
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As in the previous two passes, if a decision made in accordance with a selector

parameter is overruled by its corresponding restrictor parameter, no entity is chosen for

the role in question.

filterTripletsAfterFourthPass: If set, the global filtering criteria defined by ban-

IdentityTriplets, banSymmetricalSubgraphs and removeNegatives will be applied

after the fourth pass completes.

Parameter selection

The algorithm has a total of 28 parameters, many of which take between two and

six values, although obviously some combinations of parameters result in the same

behaviour—for example, if doSecondPass is off, then the other second pass parame-

ters are rendered irrelevant. In addition, it was not known in advance which of the entity

selection or restriction parameters would yield the best results, either individually or

in combination with each other. Therefore, some method for empirically determining

a good parameter set was required. An exhaustive search of the parameter space was

impractical since there are over four billion possible combinations of parameters (be-

fore removing redundant variations), so I used the JGAP genetic algorithms library 5 to

perform stochastic parameter selection based on the LLL training set.

The process began by creating a population of randomly-generatedparameter sets—

I chose 200. A first generation was then produced by randomly ‘breeding’ the members

of the random seed population with each other, producing offspring that displayed mix-

tures of their parents’ characteristics, and introducing random ‘point mutations’ into

their parameters. This produced a new population of around 550 parameter sets. The

LLL training set was then processed once with each of these parameter sets, after which

JGAP evaluated each result with a fitness function that measured each parameter set’s

ability to solve the problem at hand (that is, to correctly predict interactions). Applying

a stochastic selection process, where fitter individuals are more likely to survive than

less fit ones, JGAP could then select a subpopulation which would be used to breed the

next generation via hybridization and mutation.

The breed-test cycle was repeated over 20 generations, with the fittest individual at

the end of the last generation being chosen as the overall winner. The entire process

was performed three times, once each with precision, recall and F-measure acting as

the fitness function, thus producing a different winner for each of the three scoring mea-

sures. Note that there is no guarantee that these parameter sets are globally optimal, as

an exhaustive search of the parameter space is not performed, but the random elements

introduced in the breeding and mutation steps are designed to avoid the search getting

stuck in local maxima, and the reasonably large population size (fluctuating around

550) is also an advantage. Note also that the fitness functions used in this process are

5http://jgap.sourceforge.net/
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not the raw precision, recall and F-measure scores on the training set, for the following

reason. Imagine two parameter sets, X (precision = 50.0, recall = 20.0) and Y (preci-

sion = 50.0, recall = 45.0). If raw precision was used as the fitness function, the genetic

algorithm would not have any grounds to choose Y over X for breeding as they would

be ranked equally. Instead, I set the fitness function for precision to be

�	 � � �
�

���
(4.1)

where � is the raw precision on the training set and � is the raw recall. Therefore,

a difference in recall acts as a tie breaker between parameter sets that result in equal

precision. Similarly, I used

�
 � ��
�

���
(4.2)

as the fitness function for recall, and

�� � � �
�� ���

���
(4.3)

for F-measure, so that a result with unbalanced precision and recall would rank lower

than one with the same F-measure but more closely balanced precision and recall.

Most JGAP options were left at their default values. I did however specify that the

population size was allowed to vary from generation to generation, and that the best-

performing individual from each generation should be kept automatically rather than

being subjected to the normal stochastic selection procedure; both of these are disabled

by default. Evaluating the effects of population size and number of generations on

the selection process is not trivial, but some investigations into this issue are presented

after the results on the LLL datasets.

Overview of experimental protocol

A high-level overview of the structure of this experiment is presented in Figure 4.4

for the parameter optimization process using labeled (training) data, and Figure 4.5 for

the testing process on unseen (test) data. The latter process is much simpler, being

essentially a linear series of steps that incorporates the results (optimal parameter sets)

from the former process.

4.2.2 Results and discussion

Each of the three top parameter sets chosen by JGAP—hereafter referred to as high-

P, high-R and high-F—were then used to process the LLL test set, and the results

were submitted to the LLL scoring service for evaluation. Table 4.4 shows the scores

achieved on the LLL training set (during parameter selection) and test set, on the hard-
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LLL training set No-interactions
MEDLINE set

Merge

Labeled gold standard

Strip out annotations

Replace entity
names with
placeholders

Parse with Charniak-
Lease parser

Treebank-style
parse trees

Tag with Blaheta-Charniak
function tagger
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parameter sets

Build Stanford
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for � , �, and �

Post-process graphs
(collapse prepositions etc.)

Scan for interactions with
Algorithm I passes 1-4

Refine
parameter sets Interactions

Check against
gold standard

Final parameter sets
after � generations

Figure 4.4: Overview of data preparation and parameter optimization protocol for Algo-

rithm I. Shaded rectangles represent data and rounded boxes are actions. The lines in the

training cycle are doubled to indicate iteration; the cycle repeats once every generation

under the control of the genetic algorithm.



LLL test set

Strip out annotations

Replace entity
names with
placeholders

Parse with Charniak-
Lease parser

Treebank-style
parse trees

Tag with Blaheta-Charniak
function tagger

Build Stanford
dependency graphs
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for � , �, and �

Post-process graphs
(collapse prepositions etc.)
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Algorithm I passes 1-4

Interactions

Submit to LLL website
for blind scoring

Figure 4.5: Overview of data preparation and evaluation protocol for Algorithm I. Shaded

rectangles represent data and rounded boxes are actions.
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Scores on LLL corpus for Algorithm I

Training set Test set

Parameter set � � � � � �

high-P 71.9 25.8 38.0 85.7 21.6 34.6

high-R 32.3 77.4 45.6 31.4 61.4 41.6

high-F 58.9 60.4 59.6 57.3 46.9 51.6

Table 4.4: Algorithm I’s relationship extraction scores (precision, recall and F-measure) on

LLL corpus, training and test, hardest subtask.

est subtask. Each parameter set has a considerably lower recall on the test set than on

the training set; the fall-off was a little larger than I expected, given that the training

and test sentences were drawn from the same topic and time period, and even selected

so that they have the same distribution of interaction types. The teams in the challenge

were not required to report their scores on the training set, which is a shame as that

would have been informative. Group 6 mention that their official run which scored �

= 52.6 was the original highest-scorer on the training set, with � = 65; although they

don’t give the source of the errors, looking at the individual test set scores (� = 60.9,

� = 46.2) suggests that it was also primarily a recall problem. It is likely that there are

syntactic constructions in the test set that are not found in the training set—such is the

danger of using small datasets. Furthermore, given the big difference between Group

6’s results with the perfect Link annotations and the noisy CCG parse, I suspect that

some of these are of a kind that is problematic for parsers (see also Section 4.4.2).

Precision, on the other hand, was much easier to maintain on the test set, and even

went up considerably under the high-P parameter set to 85.7. There are uses for high-

precision methods; although a recall of 21.6 means that only one in five interactions

are successfully recovered, this is less of a problem in large datasets where the better-

established claims will be repeated several times anyway (see Section 5.2.2).

Table 4.5 shows the results for each of these parameter sets—hereafter referred to

as high-P, high-R and high-F—in context with the original LLL contestants, ranked

once again by F-measure. high-P is near the bottom, but high-R and high-F both come

in above the only other run to handle both sentence types without using the linguistic

annotations. Although they are still quite far from Group 6’s high scorers, those rely

heavily on the perfect Link data. Comparing like for like, then, high-R and high-F were

very successful.

Two small points must be made about the rules of the task which may have had

a minor negative impact on these scores. One is that in cases where a sentence re-

ports two distinct interactions between the same two entities, each one is annotated

separately, so there are potentially two true positives available. For example:
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Results of the LLL Challenge, plus Algorithm I

Sentences Annotations Group � � �

easy yes 6a 65.0 72.2 68.4

both yes 6b 63.2 66.2 64.7

both yes 6c 55.6 53.0 54.3

easy no 6d 68.5 44.4 53.9

easy yes 6e 60.9 46.2 52.6

easy no 1 50.0 53.8 51.8

both no �� � 57.3 46.9 51.6

easy yes 4 37.9 55.5 45.1

both no ��� 31.4 61.4 41.6

both no 6f 50.0 33.7 40.2

easy no 5a 25.0 81.4 38.2

both no �� � 85.7 21.6 34.6

easy yes 5b 20.5 90.7 33.4

both yes 3 51.8 16.8 25.4

hard yes 5c 14.0 93.1 24.4

hard no 5d 14.0 82.7 24.0

easy no 2 10.6 98.1 19.1

Table 4.5: The results of the LLL Challenge, in descending order of F-measure. ��� in-

dicates Group 6’s unofficial runs. �� �, ��� and �� � are my high-P, high-R and high-F

runs.
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These results suggest that a rising level of GerE in sporulating cells may

first activate cotD transcription from the upstream site then repress tran-

scription as the downstream site becomes occupied.

If an algorithm only reports one GerE�cotD interaction, its recall on this sentence

is only 50.0. I chose not to report both in cases like this, for the pragmatic reason that

in many sentences, several of the words in my interaction keyword list appear even if

there is only one interaction being described. Reporting multiple interactions between

the same agent and target led to seriously impaired precision, as in those cases each

keyword could report the same interaction.

Also, there is a rather ambiguous statement in the task instructions6 about sentences

where “the absence of interaction between two genes is explicitly stated”—this sounds

like it might refer to negations but the example given has nothing to do with negation, so

I was not sure how to proceed. A full discussion of this issue appears in Section 5.3.4.

There are very few examples in the training set where either of these details might be a

problem, and I assumed they would be just as rare in the test set.

At the time this experiment was performed, there was little that could be done

in the way of error analysis without essentially re-creating the test corpus annotation

from scratch and removing its status as a blind gold standard. However the scoring

program does break each run’s predictions down by interaction category, and provides

a count of the number of spurious predictions that were made for sentences that did not

have any interactions in, which I will call � here for brevity. These scores are given

in Table 4.6. Statements about regulons were a particular problem for all the runs,

presumably because they tend to be phrased using idioms related to family or group

membership which are not modeled well by the interaction subgraph concept as used

here. Thankfully they came up rarely enough that this was not a great handicap. The

physical interactions category, on the other hand, is large enough to have a significant

impact on scores; the considerable difference in performance between the genetic and

physical categories suggests to me that the small number of training examples in the

latter category did not provide a broad enough range of sentence structures to reliably

predict likely performance on the unseen data when performing parameter optimiza-

tion. This of course is essentially the same problem faced by those who use wholly

stochastic methods. On the other hand, high-P’s perfect precision on the largest cat-

egory is impressive, even given a recall of just under a third, and it showed the same

lack of false positives on the non-interaction sentences too—a reminder of the benefits

of expanding one’s training data.

6http://genome.jouy.inra.fr/texte/LLLchallenge/
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Scores by category on LLL test set for Algorithm I

Genetic Physical Regulon

Parameter set � � � � � � �

high-P 100.0 29.1 60.0 8.7 - 0.0 0

high-R 50.7 67.3 30.2 56.5 100.0 20.0 45

high-F 76.7 60.0 54.5 26.1 - 0.0 14

Table 4.6: Algorithm I’s precision and recall on each interaction category in the LLL Chal-

lenge test set, and the number of false positives produced for sentences without interactions

(�). Categories in which no predictions were made cannot have a precision score since

this would mean dividing by zero. Bear in mind that the relative sizes of the interaction

categories are roughly in the ratio 68:25:7 in the order given here; high-R’s recall of 20.0

for regulon memberships comes from a single prediction.

Analysing the parameters selected

One useful by-product of rules-based methods is that their behaviour is relatively trans-

parent, unlike some stochastic classifiers. Table 4.7, Table 4.8 and Table 4.9 show

which parameters were selected by the genetic algorithm for each winning parameter

set. (Those parameters which are rendered redundant by other parameters have not

been shown—e.g. if doFourthPass is false, none of the fourth pass parameters are

shown.) Several interesting observations can be made regarding these lists. First of all,

it is clear that the genetic algorithm chose parameters which reflect the overall archi-

tecture of this approach. When precision is chosen as the fitness function (Table 4.7),

only the first pass is used. Only those interactions that can be found by downstream

graph traversal from interaction keywords according to the appropriate rules are al-

lowed. This is to be expected, as the later passes successively relax the constraints

of the first parse in order to increase recall, at the risk of allowing more false posi-

tives. Sure enough, the genetic algorithm saw fit to use all four passes when the goal

was maximum recall (Table 4.8) and passes 1–3 only when selecting for F-measure

(Table 4.9). This corroboration between the design goals of Algorithm I and the pa-

rameters chosen by the selection process demonstrates the power of genetic algorithms

in this kind of problem.

Furthermore, the parameters chosen to fine-tune the behaviour of the first pass in

the high-P set also reflect the high-precision goal of that set. banReflexives, banSym-

metricalSubgraphs and banAgentsAsTargets both filter out common causes of error

identified during development, simultaneously increasing the risk of false negatives,

but these errors are of minimal consequence when optimizing for precision. banIden-

tityTriplets also falls into this category, but it is redundant during pass 1 when either

banSymmetricalSubgraphs or banAgentsAsTargets are set. (Since pass 1 can only

find agents and targets by graph traversal from the interaction keyword, an identity
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Parameter set high-P for Algorithm I

Pass Parameter Value

Global banReflexives true

banSymmetricalSubgraphs true

banIdentityTriplets false

removeNegatives false

resolveContradictionsWithinPasses true

agentSelectorContradictionWithinResolver WORD FURTHEST

Pass 1 lateSearchAgentsFirstPass true

deepSearchTargetsFirstPass true

haltSearchAgentsFirstPass false

haltSearchTargetsFirstPass true

banAgentsAsTargets true

filterTripletsAfterFirstPass true

Pass 2 doSecondPass false

Pass 3 doThirdPass false

Pass 4 doFourthPass false

Table 4.7: Parameters selected for Algorithm I by the genetic optimization procedure, using

precision as the fitness function.

triplet can only result from a symmetrical subgraph; also this entails the same node

acting in both the target role and the agent role.) Less predictably, removeNegatives

is not set either. This is surprising because as a filtering criterion it can only reduce

recall, not precision. If the optimization process had performed an exhaustive search

of the parameter space, this result would indicate that there were no candidate interac-

tions proposed by pass 1 with these parameters where removeNegatives would have

made any difference at all. However, since the parameter space was not exhaustively

explored, there is a possibility that a parameter set without removeNegatives proved

to have the highest precision at the last round of selection.

haltSearchAgentsFirstPass and haltSearchTargetsFirstPass both cause the al-

gorithm to be conservative about making predictions, which is obviously a benefit when

aiming for high precision. However the choices of lateSearchAgentsFirstPass and

deepSearchTargetsFirstPass require a little more explanation. lateSearchAgents-

FirstPass dictates that a candidate agent for a given interaction keyword is only valid

if the last arc in the dependency path from the keyword to the entity is one of a small

number that are typically characteristic of the agent role in a declarative statement (see

Section 4.2.1). This is a fairly severe constraint, as there are many situations where this

would not be the case. Take for example the sentence sequestration of SpoIIE protein

into the prespore plays an important role in the control of sigmaF activation. Although
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SpoIIE is embedded in a phrase which is the subject of the verb plays, it is not the

head of that phrase—sequestration is. This means that sequestration will be attached

to plays via that verb’s nominal subject arc, and SpoIIE will be attached to sequestra-

tion via the prepositional of dependency which is not considered by the algorithm to

be evidence of agent-hood. Therefore, the algorithm is not able to identify the agent

for this interaction when using the high-P parameter set. Of course, it is trivial to sug-

gest examples where there are no arcs in the subgraph at all which are identified as

agent arcs—for example sigma(H)-dependent expression of spo0A—but these remain

invisible to the first pass regardless of the parameters in use.

Looking at the high-R parameter set (Table 4.8), it may seem counter-intuitive that

some of the global filtering criteria have been left on, since they can contribute noth-

ing to recall. Note however that while filterTripletsAfterFirstPass and filterTriplet-

sAfterThirdPass are true, their second-pass and fourth-pass equivalents are false, so

each (presumably) higher-precision filtered stage is followed by a higher-recall unfil-

tered stage. Also remember that precision is used as a tie-breaker for runs that have

equal recall, so it is not surprising to see a small amount of filtering taking place even

here.

In pass 1, the halt search parameters are both off, and deepSearchAgentsFirstPass

is on. This means that every downstream entity will be accepted as an argument for a

given keyword, and evidence from every position between the keyword and the entity

will be examined to decide whether it is the agent. Then, it is quite fascinating to see

the algorithm ‘cast the net wider’ progressively from pass 2 to pass 4. Pass 2 looks for

missing agents before the interaction word, pass 3 looks for them in either direction,

and finally pass 4 looks for both agents and targets in either direction. This is perhaps

what I would have done had I decided to specify the behaviour of each pass myself,

but that would have been based on assumptions rather than evidence. By leaving these

decisions open and learning the rules from the training data, they have some empirical

justification.

The agent selector parameters also make an interesting point. I would have not

known to pick WORD FURTHEST in the second pass and WORD NEAREST in the third,

and I can’t think of a convincing justification that doesn’t sound slightly contrived. But

it would appear that this is a genuine characteristic of the dataset, rather than an artefact

of this run, as the same selectors and restrictors have been picked for these passes in

high-F as well (Table 4.9).

The strategy adopted for high-F is interesting. The search parameters for the first

pass are quite conservative, but not the same as those selected for high-P. It only uses

the type of the first dependency arc on each downstream path as evidence that there

might be an agent on that path, and does not go any further when it finds the first

one. It will accept multiple targets on the same path, but only if there are no agent-

like dependencies anywhere on that path. It does a lot of filtering during and after the
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Parameter set high-R for Algorithm I

Pass Parameter Value

Global banReflexives false

banSymmetricalSubgraphs true

banIdentityTriplets true

removeNegatives false

resolveContradictionsBetweenPasses false

resolveContradictionsWithinPasses true

agentSelectorContradictionWithinResolver LEFTMOST

Pass 1 deepSearchAgentsFirstPass true

haltSearchAgentsFirstPass false

haltSearchTargetsFirstPass false

banAgentsAsTargets false

filterTripletsAfterFirstPass true

Pass 2 doSecondPass true

agentSelectorSecondPass WORD FURTHEST

agentRestrictorSecondPass BEFORE

filterTripletsAfterSecondPass false

Pass 3 doThirdPass true

agentSelectorThirdPass WORD NEAREST

agentRestrictorThirdPass EITHER

filterTripletsAfterThirdPass true

Pass 4 doFourthPass true

agentSelectorFourthPass RIGHTMOST

agentRestrictorFourthPass EITHER

targetSelectorFourthPass LEFTMOST

targetRestrictorFourthPass EITHER

filterTripletsAfterFourthPass false

Table 4.8: Parameters selected for Algorithm I by the genetic optimization procedure, using

recall as the fitness function.
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Parameter set high-F for Algorithm I

Pass Parameter Value

Global banReflexives true

banSymmetricalSubgraphs true

banIdentityTriplets false

removeNegatives true

resolveContradictionsBetweenPasses true

agentSelectorContradictionBetweenResolver WORD FURTHEST

resolveContradictionsWithinPasses true

agentSelectorContradictionWithinResolver RIGHTMOST

Pass 1 deepSearchAgentsFirstPass false

lateSearchAgentsFirstPass false

deepSearchTargetsFirstPass true

haltSearchAgentsFirstPass true

haltSearchTargetsFirstPass false

banAgentsAsTargets true

filterTripletsAfterFirstPass true

Pass 2 doSecondPass true

agentSelectorSecondPass WORD FURTHEST

agentRestrictorSecondPass BEFORE

filterTripletsAfterSecondPass false

Pass 3 doThirdPass true

agentSelectorThirdPass WORD NEAREST

agentRestrictorThirdPass EITHER

filterTripletsAfterThirdPass false

Pass 4 doFourthPass false

Table 4.9: Parameters selected for Algorithm I by the genetic optimization procedure, using

F-measure as the fitness function.
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Figure 4.6: Graph showing increase in maximum fitness over time during the parameter

selection process, over 20 generations. The three data series represent selection runs with

each of the three fitness functions: precision (Æ), recall (�), and F-measure (�).

first pass, then none after that. Manually designing a balanced system is much harder

than one that favours precision or recall, as there are some very obvious choices you

can make to widen or narrow the search space, but too many potentially well-balanced

strategies to test them all one by one, especially with this many parameters. Delegating

that part of the design process to an automated, stochastic procedure is a great benefit.

One drawback to that procedure is that although the run-time behaviour of Algo-

rithm I is transparent and deterministic, the stochastic elements in parameter selection

mean that the winning parameter sets may not represent globally optimal solutions.

Also, JGAP provides the freedom to choose the size of the populations and the number

of breeding generations, as well as various additional options. This means that one

cannot assume that another selection run with a larger population or longer timescale

would not produce radically different results. However, certain analytical methods can

help us interpret the results of parameter selection.

One useful technique is to look at the change in highest achievable fitness score

from generation to generation as the genetic algorithm runs. Figure 4.6 plots this curve

for each of the three runs optimized for different fitness functions. The results are

rather interesting. Precision hits a plateau almost immediately, changing very little

from generation 2 to the end, with the same score achieved in the original optimiza-

tion. Enabling passes 2-4 of the algorithm is likely to cause reduced precision, as a

tradeoff for increased recall, therefore parameter sets which choose these options are
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Figure 4.7: Graph showing increase in maximum fitness over time during the parameter

selection process, over 200 generations. The three data series represent selection runs with

each of the three fitness functions: precision (Æ), recall (�), and F-measure (�).

more likely to get ‘killed off’ quickly—the net result meaning that large regions of pa-

rameter space are effectively closed off in this run. Recall starts low but grows rapidly,

effectively leveling off at generation 11, whereas F-measure undergoes a slow, gradual

increase throughout the selection process.

These plots suggest that of the three parameters, F-measure is the most likely to

benefit from additional generations. In order to test this hypothesis, I ran the parameter

selection process again, once for each fitness function, but with 200 generations instead

of 20. The results are shown in Figure 4.7. As predicted, precision remained level;

indeed, it achieved a result of P = 72.2 on the first generation, and remained constant.

Once again recall went through a rapid growth spurt in the first few generations before

leveling off, although its final plateau of R = 77.7 was not reached until generation

24, suggesting a small benefit for longer training times that was not apparent over

20 generations. The comparatively poor scores in the earlier generations reflect the

fact that high-recall optimization requires more of the parameter space to be searched,

particularly those regions relating to the fourth pass of the algorithm. Contrast this with

the stability of precision optimization, during which solutions exploring passes 2-4 will

be strongly selected against. Finally, F-measure enjoyed the only tangible benefit of the

extra training time, reaching an ultimate F = 61.8 at generation 66, compared with 59.6

in the original 20-generation run. Interestingly, in this run it passed 59.6 at generation

9, demonstrating the unpredictable nature of stochastic optimization.

121



Another question worth addressing is whether the maxima being converged upon

by the three runs are local or global. This is impossible to determine from just one

run. Indeed, it is not even guaranteed that there are distinct global maxima for the

three functions, as opposed to multiple local maxima without significant differences in

fitness. Certainly it is true that there are contiguous regions of parameter space with

identical fitness, for example where fourth-pass parameters vary but doFourthPass re-

mains unset. It is conceivable that these can act as ‘traps’, since within these regions,

changing any one random parameter is more likely than usual to have no effect what-

soever on the fitness score.

In order to look for evidence of such phenomena, I ran the parameter selection

process 20 additional times for each fitness function, keeping the same seed population

size (200 parameter sets) and duration (20 generations) as in the original experiments.

To determine whether the winner of each run had arrived at solution similar to the

original winner for the same function, I designed a similarity measure � between two

solutions. This is defined as the proportion of parameter values the two sets have in

common, discounting any parameters from passes that are disabled in both solutions,

and counting as non-matches any parameters from passes that are only enabled in one.

Thus, when comparing two parameter sets that both have doFourthPass set to false,

� = the proportion of parameters from passes 1-3, plus global parameters, that are set

to the same values. However, if one has doFourthPass set to true, � = the proportion

of all parameters that have the same values in both sets, but counting all fourth-pass

parameters as non-matching regardless of their actual values.

� is only an estimate of functional similarity; there are a few other specific pa-

rameter changes that do not affect Algorithm I’s behaviour, such as toggling ban-

IdentityTriplets when banSymmetricalSubgraphs is set and only the first pass is

performed. However, it does enable us to plot solution similarity vs. fitness score

difference against the original winner, for each new winner found for a given fitness

function. Low score differences at low levels of similarity would indicate that there are

distinctly different solutions which are equally effective.

Figure 4.8 shows the results of this experiment. Precision shows the most variation

in parameter similarity, but each run achieved exactly the same score as the original.

This indicates that there are many diverse parameter sets that produce equally effective

behaviour, and is consistent with the results in Figure 4.7 that show a failure to improve

precision even with ten times as much training time. For recall, there are several runs

that do as well or nearly as well as the original, some down to comparatively low

similarities, but not as low as for precision. This suggests that there are more key

parameters that must be set correctly for high recall, presumably relating to the later

passes of Algorithm I. On inspection, all 20 of the recall winners performed all four

passes, with the exception of one that skipped pass 2 and scored the second lowest

out of any of the recall winners. In the case of F-measure, the fact that most runs
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Figure 4.8: Graph showing similarity of parameters selected against differences in winning

score against original winners, for 20 runs each of precision, recall and F-measure: Æ, �,

and �. Points above the midline represent runs that scored better than the original run for

that fitness function, and points below scored worse.

scored higher than the original backs up the suggestion of Figure 4.7 that the original F-

measure run could have benefited from further training. The absence of low-similarity,

low-score-difference points for F-measure makes it less likely that the fitness landscape

for F-measure contains multiple local maxima, although this cannot be ruled out.

4.3 Later developments

While I was preparing Algorithm I for publication, I became aware of two new papers

that also dealt with the topic of the LLL corpus, but which unfortunately scored rather

better. The first (Giuliano et al., 2006) used kernel functions based on shallow lin-

guistic features of the sentences that interacting entities are found in—words and short

word sequences, lemmas, POS tags, orthographic features etc. These defined similarity

scores for a pair of entities in one sentence and a pair in another (or, obviously, another

pair in the same sentence) based on the regions of the sentence around and between

the two entities. The order of the words was not taken into account, meaning that their

solution was more akin to a text classification method than a typical information ex-

traction algorithm. They trained a support vector machine (Cortes and Vapnik, 1995)

on the LLL training set, using non-interacting pairs from that set as negative examples.

The SVM could then be used to classify entity pairs in the test set into interacting and
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not-interacting based on their similarity to the training data. They achieved � = 56.0,

� = 61.4 and � = 58.6—impressive given their apparently superficial ‘bag of words’

model.

The other paper (Fundel et al., 2007) described a system called RelEx which was

much more similar to my own approach, using graph-traversal rules over dependency

graphs from the Stanford tools—although they also used Stanford’s lexicalized parser

which Chapter 3 suggests may have unwittingly cost them a few points. However,

they combined the graphs with the output of a noun phrase chunker so that each noun

phrase occupied a single graph node. They then used three separate routines to detect

three different broad classes of construct. The first looked for A activates B style

phrases by attempting to traverse the graph between each two pairs of noun phrases

containing entities. Traversal could go upstream or downstream, but the graph was

split above the parent of each nsubj or nsubjpass arc, to avoid crosstalk between

the arguments of different verbs. The second routine looked for activation of A by

B statements by finding the longest possible paths made up of just noun phrases and

prepositions such as by, for and with which also contained gene names. A variant

of this routine performed an analogous task within noun phrases. The third routine

was similar to the second but extracts phrases like interaction between A and B. After

extracting candidate interaction pathways with these three rules, Relex used a few pre-

processing stages to filter out false positives, verify the agent/target associations and

enumerate the members of coordinating conjunctions (X activates Y and Z etc.). This

relatively simple approach attained scores of � = 68, � = 78 and � = 72. The paper

does not state explicitly whether this is on the full sentence set, but they used the easy

55-sentence training set for development purposes, and mention that RelEx does not

attempt to resolve anaphora (coreference), which implies that these results are for the

easy sentences only. Nonetheless it is very impressive.

Both of these algorithms scored higher than Algorithm I seemed to be capable

of. Despite varying the genetic algorithm’s parameters and trying several different

parameter selection methods, I was unable to generate any parameter sets that scored

significantly higher than the ones presented here. One limitation of Algorithm I is

that although it can find qualitative trends in the training data—e.g. “for interaction

keywords that remain without entities by the fourth pass, the most likely agent is the

rightmost entity, and the most likely target is the leftmost”—it has no mechanism for

learning systematic exceptions to these rules. Also, its core routine, the graph-traversal

in pass 1, is rather rigid despite all the parameters, and does not allow for cases where

there is no semantically-important keyword at the root of a subgraph covering two

genuinely interacting entities.

However, the strength of dependency-based methods in general was reinforced by

RelEx’s striking results. It is hard to do a detailed comparison without access to RelEx

itself (it is not publically available), and some of the advantage may be due to an ab-
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sence of hard sentences in its test data, but there are interesting aspects to its design

which seemed like they might be important. Firstly, noun phrase chunking seems like

a sensible way to reduce unnecessary variability in the graphs and thus make simple

methods more effective. In a phrase like X inhibited Y expression the target of the

interaction is not attached directly to the verb as an object—expression is the object

node in the graph, and Y is attached to it as a prenominal modifier. However, if a

noun phrase chunker is applied so the phrase becomes X inhibited Y expression then

a simple pattern or routine designed to capture X inhibited Y will work here too. This

means that the system must detect entities that are substrings of nodes, but this is al-

ready necessary as the Charniak-Lease parser treats strings like sigma(H)-dependent

as single words so they end up in one graph node.

Another notable difference between their approach and mine is that RelEx does not

require an interaction keyword to be at the head of a subgraph covering the two enti-

ties. Although this is a powerful way to filter out false positives, as my high-P results

demonstrate, there are legitimate cases where this simply isn’t how the sentence is laid

out. For example in X is under the control of Y constructions, the Stanford scheme

roots the graph at the verb is, and the keyword control is a prepositional object via the

preposition under. Cases like these stand a decent chance of being captured by one

of the fallback passes of my algorithm, but ideally, low-precision fallback processing

should be reserved for problematic sentences where there is an actual error in the parse

or the graph preventing interpretation, or a very obscure syntactic pattern that is hard

to model in a sensible way. RelEx’s approach—extract candidate pathways first and

then check to see if they contain keywords at any point—means a much broader range

of constructions can be coped with.

4.4 Algorithm II

In the light of the results achieved by Giuliano et al. (2006) and particularly Fundel

et al. (2007), it seemed clear that additional development was necessary, so I begun

work upon a replacement interaction extraction algorithm. Some of the design deci-

sions were informed by the features of RelEx mentioned above, but I did not wish to

simply reimplement RelEx or a variation on it. Instead, I decided to explore a different

region of the solution space. Fundel et al. mentioned a few specific syntactic patterns

that RelEx’s small number of broad rules could not interpret, so I chose to design a

larger number of more specific rules, along with mechanisms to generate variations

on those rules. The other motivation for taking this approach was that the close anal-

ysis of the training data necessary to construct the ruleset would yield more insights

into the nature of the problem and the characteristics of the chosen solution. This

knowledge-rich methodology would also differentiate Algorithm II from Algorithm I’s

knowledge-poor approach.
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4.4.1 Methods

One design goal for Algorithm II was to create an extensible platform for relationship

extraction tasks that could be easily adapted to other scenarios rather than being too

closely tied to the LLL data. To help maintain this flexibility, I designed a language

called Metapattern Language (MPL) that permits the definition of subgraph patterns

and the specification of expansion rules to allow the generation of allowable variants

on those patterns. The patterns are defined over the node texts (i.e. words), node types

(i.e. parts of speech) and arc types in a region of a dependency graph, and include

placeholders and matching rules for identifying entities. Each pattern thus defines the

syntactic relations that hold between a number of entities and a number of keywords,

classes of words or POS tags; in other words, one or more syntactic constructions that

are characteristic of a semantic relationship between those entities. In order to keep

the matching algorithm and the MPL syntax simple, I restricted the patterns to those

which can be expressed as trees—that is, they cannot contain arcs which would intro-

duce cycles or multiple parenthood. These phenomena are not widespread in Stanford

dependency graphs, however, and in my analysis of the LLL training data I found no

examples where this restriction was problematic.

This approach was inspired by programs such as TGrep2 7 and Tregex (Levy and

Andrew, 2006), the latter of which is included with the Stanford toolkit. These allow

pattern matching over phrase structure trees such as those found in the Penn Treebank,

using patterns which are essentially regular expressions describing hierarchical rather

than linear data. The expressive capabilities of MPL are somewhat restricted compared

to these tools, although MPL has the added complexity of supporting two labels on

each node (word and tag) and one on each arc, compared to the singly-labeled nodes

and unlabeled arcs of a syntax tree. Similar capabilities are provided by JAPE, part of

the GATE package (Cunningham et al., 2007) from Sheffield University, 8 CQP, part

of the IMS Corpus Workbench (Christ, 1994) from the University of Stuttgart, 9 and

Mother of Perl (Doran et al., 1996), from the University of Pennsylvania. None of

these systems provide native support for Stanford dependency graphs, however.

The software I wrote to support this approach consists of an MPL parser, for build-

ing in-memory representations of subgraph patterns supplied in a simple text format,

and a matching engine, for detecting matches between a pattern and a given Stanford

graph. In addition, I manually constructed a set of patterns to cover all of the examples

found in the training set (excluding a small number of apparently erroneous interac-

tions), making the rules as general as possible while at the same time aiming to keep

the number of false positives to a minimum. After a few notes on preparing the data,

I will describe the three elements of the Metapattern Language—match rules, pattern

7http://tedlab.mit.edu/˜dr/Tgrep2/
8http://www.gate.ac.uk/
9http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/
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a. requires also

the GerE transcription

protein binding DNA sspG

b. requires

sspG transcription also the DNA binding protein GerE

Figure 4.9: These two graphs show the sentence sspG transcription also requires the DNA

binding protein GerE, both before (a) and after (b) noun phrase chunking. The number of

nodes has been halved and the structural simplicity of the sentence has come to the surface.

rules and replacement rules—and give some examples of patterns created with them. A

more formal language specification is provided in Appendix D. I will then describe the

matching algorithm itself, and briefly summarize the experimental protocol in graphi-

cal form, before presenting my results on the LLL corpus.

Data preparation

The data preparation pipeline was largely the same as in Section 4.2.1, using the same

expanded training set for algorithm development, with one major exception. In order to

reduce the variation in the data, I adopted the RelEx policy of chunking noun phrases

together into single nodes. To accomplish this, I developed a simple deterministic

algorithm that processed the parse trees output by the Charniak-Lease parser before

performing the tree�graph conversion with the Stanford tools. The algorithm looks

for all subtrees containing only nouns, adjectives, numbers, foreign words, determiners

(articles) and verb gerunds/participles. These are then glued together into a single word

(with the spaces replaced by underscores) occupying a single tree node at the root level

of the original subtree, with a new POS tag equal to the POS tag of the final word in

the sequence. Similar operations are performed to flatten out coordinating conjunctions

and appositional structures with parentheses. The resulting graphs generated from such

trees are much simpler, as shown by Figure 4.9, and significantly reduce the number of

patterns that must be generated to cover the training data (see below).
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Match rules

The simplest rules in the MPL, these declare variables which can be used in the con-

struction of subgraph patterns to match individual pattern elements—node texts, node

types or arc types. A match rule requires a variable name (prefixed by @) and a regular

expression to define the set of strings which the variable can match; this can just be

a string literal in the simplest case, but this would be somewhat pointless as pattern

rules (see below) allow for the embedding of literal strings anyway. A few examples

of match rules follow:

match @AGENT = Entity[a-z]{1,2}

This rule defines the regular expression required to extract the agent of each inter-

action, according to the encoding scheme described in Section 4.2.1. Identical rules

were declared for @TARGET, and @ENTITY (for additional entities that may be re-

quired to make sense of a syntactic construction but which are not the agent or target of

the interaction being described). This rule will match any string containing the regular

expression specified, even if there is additional text before or after.

match @VERB = ˆVB.?$

This rule is designed to capture any part of speech representing a verb. The Penn

Treebank tagset contains six POS tags for different verb forms—VB, VBD, VBG, VBN,

VBP and VBZ. The regular expression in this rules looks for the letters VB followed

by a single optional character. It will not match any longer strings containing these

letters, because the ˆ and $ characters anchor to the start and end of a search string

respectively. However, with the standard PTB tagset, this does not make a difference

as no other labels contain VB.

match @AFFECT = ˆ(activate|affect|antagonise|antagonize)$

This rule groups together a set of verbs that appear in similar syntactic contexts,

so that patterns can be defined using the variable @AFFECT which will match phrases

that use any of the alternative words in the regular expression. The actual list is much

longer than this, these are only the first four valid alternatives. Note the explicit spelling

variation for ‘antagonize’. Similar verb classes for @AFFECTS, @AFFECTED and

@AFFECTING hold the inflectional variants (e.g. activates, activated etc.). These vari-

ations could have been automatically generated using morphological analysis software,

but given the reasonably restricted scope of the LLL data, I elected to manually enter

them rather than choose, test and evaluate another tool. The word lists were compiled

from examples in the LLL training data and lists inherited from a previous text mining

project (Domedel-Puig and Wernisch, 2005), and then manually expanded.

match @PREP_BY = ˆ(prep_by|prep_through|prep_via)$
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This rule matches any of the dependency arcs representing prepositional by, through

or via relations, as they are semantically similar and tend to occur in similar contexts

in the LLL training set. Because of the collapsing described in Section 4.2.1, preposi-

tions do not exist as separate nodes in the graph but simply become specifically-typed

dependencies between the modified phrase and the modifying phrase.

Match rules can be negative as well as positive. A match rule preceded by an excla-

mation mark means the variable will match any string that the regular expression does

not match. For example, the following rule means “match any string not containing the

substring Entity”:

!match @NOT_ENTITY = Entity

Pattern rules

Pattern rules define the basic syntactic patterns that can be matched, setting constraints

on subgraph topology, the textual content of the nodes in the subgraph, the POS tags

of the nodes and the dependency types of the arcs connecting the nodes. (Topology is

the only strictly required information as the others may be completely generalized with

wildcards if necessary.) For a matched pattern to yield an interaction, an @AGENT node

and a @TARGET node must be defined. The following examples illustrate the syntax

and various features of patterns:

pattern

VB˜˜@AFFECT

( @NSUBJ @NOUN˜˜@AGENT )

( dobj @NOUN˜˜@TARGET )

end

The first element in a pattern declaration represents a node of the graph—the root

node of the subgraph matched by the pattern. The string to the left of the ˜˜ separator

is the POS tag of the node, and the string to the right is the text of the node. These may

be either literal strings or variables. In the pattern shown here, the root node will match

any node with the exact POS tag VB and text matching the @AFFECT variable above

(e.g. activate).

Each opening parenthesis indicates a dependency leading off the currently-open

node (remember dependencies are directional), and must be followed by an element

defining the dependency type. These are followed by POS-content pairs as for the

root node. A closing parenthesis closes the current node. In this case, then, the root

node can have two children. Both must contain entity placeholders and have POS tags

matching the @NOUN variable. One, the agent, must be attached via any dependency

matching the @NSUBJ variable (nsubj itself and some common substitutions), and

the other must be attached via the dobj dependency (no variation allowed). This
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pattern, then, will match phrases of the sort Entityaa can activate Entitybb, although

the modal verb can is not explicitly matched by the pattern. Therefore the same pattern

will also match Entityaa should activate Entitybb, Entityaa must activate Entitybb etc.,

and indeed Entityaa will not activate Entitybb, but negative cases can be easily removed

by post-processing.

A node can have any number of children, although more than two is only required

for certain very specific constructions, and a matched node in a sentence graph can have

other children that are not covered by the subgraph pattern, as long as all the arcs and

nodes specific by the pattern are matched. Children can of course be nested, allowing

patterns to be specified more than two levels deep:

pattern

VBN˜˜@APPEARED

( xcomp VBN˜˜@AFFECTED ( agent @NOUN˜˜@AGENT ) )

( @NSUBJPASS @NOUN˜˜@TARGET )

end

This pattern matches phrases of the sort Entityaa appeared to be activated by Enti-

tybb. The root node here is not the content-bearing keyword matched by @AFFECTED,

but the rhetorical verb matched by its parent @APPEARED. While the agent of the in-

teraction is the syntactic child of @AFFECTED, the target is the child of @APPEARED.

This is one example of a pattern that succeeds where pass 1 of Algorithm I fails, be-

cause of Algorithm I’s requirement that the interaction keyword is at the root of the

subgraph containing the entities. Of course, pass 4 in Algorithm I may have picked up

interactions like this by looking outside the interaction keyword’s subgraph, but this is

a rather unprincipled and unreliable solution.

This pattern is also an example of a passive-voice construction, a more complex

version of the simple case Entityaa is activated by Entitybb. In these sentences, al-

though Entityaa is the syntactic subject, it is the semantic target, and Entitybb which is

a prepositional object is the semantic agent. The Stanford algorithm makes detecting

such reversals easy, as the subject is given the dependency type nsubjpass rather

than the usual nsubj, and the object is given the agent dependency type, both of

which are unique to passive sentences and unambiguous.

One other important capability of pattern definitions is support for composite nodes.

Composite nodes are nodes in the subgraph pattern whose textual content must match a

sequence of variables and string literals; this gives the matching algorithm more gran-

ular access to the substrings of the node’s text. They are useful when the semantics of

a pattern rely on other text being present in the same node as one of the entities:

pattern

@NOUN˜˜@ROLE
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( prep_of @NOUN˜˜{#AGENT_regulon} )

( @NSUBJ @NOUN˜˜@TARGET )

end

This pattern matches sentences like Entityaa is a member of the Entitybb regulon

(note the underscores where the noun phrase chunker has grouped noun phrases into

single tokens), but the syntax with which the composite node is defined is a little dif-

ferent to that for a variable node or a simple string literal. The composite node is

marked out by brace characters ({}) and contains a variable (#AGENT) and a literal

string (regulon) separated by an underscore. The underscore is a special wildcard

which matches any single non-alphanumeric character, so the composite as a whole

will match any node containing an entity placeholder (for the #AGENT variable) fol-

lowed by a separator character followed by the word regulon. Additional material

before or after the matched sequence (such as the) is allowed, but any additional mate-

rial within it will cause the match to fail. Notice that the variable name is introduced by

a hash character rather than the usual at-sign. This tells the MPL parser not to expand

that variable with variable replacement rules (see below), as some of the replacement

rules I designed will cause agent or target nodes to be expanded into entire new tree

branches. If this happens to a composite sequence element it will break the structure of

the composite. Hash-variables can be used anywhere a normal variable cannot be used

because of problems caused by replacement rules. (In fact it is also possible to write

different replacement rules specifically for hash-variables, should the need arise.)

The other major use of composite nodes is to specify patterns that only consist of a

single node, for example:

pattern

@NOUN˜˜{#AGENT_@DEPENDENT_#TARGET}

end

This pattern matches phrases like Entityaa-dependent Entitybb expression, where

the entire semantic content of the interaction is present in a single chunked noun phrase.

Patterns that are defined in MPL are known as seed patterns. This differentiates

them from patterns created automatically by replacement rules, the final kind of rule in

the language.

Replacement rules

Already mentioned above, these are simple macros that enable part of a pattern to be

replaced with any arbitrary string. Thus, they facilitate the automatic generation of

additional patterns from original patterns used as seeds. They are applied using simple

string replacement on the ‘source code’ of the patterns after normalization of whites-

pace in the patterns, but before they are parsed and compiled into Java objects, making
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them very flexible; this means however that care must be taken to avoid generating

variant patterns which are syntactically invalid. (These concerns led to the introduction

of the hash-variables described above.) After reading an MPL source file, the parser

has a pool of patterns and an ordered list of replacement rules. The replacement rules

are applied one by one to the pool in list order, keeping the original patterns in the

pool; any new patterns are added to the pool after the final application of the rule that

created them, meaning they are then subject to any replacement rules later in the list. If

a pattern contains several instances of a string that is due to be replaced by a particular

rule, as many new strings will be created as there are possible ways to apply the rule

at least once. For example, if a pattern contains two instances of a string due to be

replaced, three new variants will be created, one with each of the replacements made

individually, and one with both made.

There are several uses for replacement rules. One is the substitution of entire nodes

(content and POS) for semantically equivalent nodes which encode different syntactic

forms, e.g. conjugations of verbs:

replace VB˜˜@AFFECT = VBP˜˜@AFFECT

replace VB˜˜@AFFECT = VBZ˜˜@AFFECTS

replace VB˜˜@AFFECT = VBD˜˜@AFFECTED

replace VB˜˜@AFFECT = VBG˜˜@AFFECTING

For each pattern containing a node specified as VB˜˜@AFFECT, the English verb

base form, each of these rules will create an equivalent pattern with a different verb

form specified—the present tense (non-3rd-person singular), the present tense (3rd-

person singular), the past tense, and the present participle or gerund. The variables

@AFFECT, @AFFECTS, @AFFECTED and @AFFECTING must be set up in advance

to contain parallel word lists in the different tenses—this conversion is not performed

automatically. Note that in English, the present tense (non-3rd-person singular) of

a regular verb (e.g. activate), tagged VBP, is identical to its base form, tagged VB.

Therefore, an alternative way to handle this situation would be to define patterns using

the base form of the word list @AFFECT with a variable POS tag that matched either

VB or VBP, and then have three replacement rules to generate variant patterns for the

other three inflections.

Analogous operations can be carried out on words that are specified by string liter-

als rather than variables, because of irregularity or lack of synonyms:

replace VBZ˜˜is = VBP˜˜are

replace VBZ˜˜is = VBD˜˜were

replace VBZ˜˜is = VBD˜˜was

replace VBZ˜˜is = VBG˜˜being
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replace VB˜˜belong = VBP˜˜belong

replace VB˜˜belong = VBZ˜˜belongs

replace VB˜˜belong = VBD˜˜belonged

replace VB˜˜belong = VBG˜˜belonging

Once again, these tense variants could conceivably have been automatically gener-

ated; such an approach for example is taken by the LVG program (Divita et al., 1998).

Alternatively, all the words in the input data could have been replaced with their lem-

mas (canonical forms) and the patterns written to use these rather than their inflected

forms. However, either approach could introduce additional sources of error.

The other main use for replacement rules is in the actual expansion of patterns to

cover more nodes, in cases where a basic pattern needs to be extended to cover seman-

tically cognate instances with extra syntactic detail which does not change the essen-

tial meaning. For example, the following pattern given at the start of this discussion

matches the simple declarative statement Entityaa can activate Entitybb:

pattern

VB˜˜@AFFECT

( @NSUBJ @NOUN˜˜@AGENT )

( dobj @NOUN˜˜@TARGET )

end

The following replacement rule swaps the target node, which is a leaf node, for an

intermediate node governing the new target node:

replace @TARGET = @PROCESS ( prep_of @NOUN˜˜@TARGET )

Assuming @PROCESS can match any arbitrary string, this creates a new pattern

which can interpret sentences like Entityaa can activate expression of Entitybb. The

overall pattern is the same, but the replacement rule has modeled a common substitu-

tion whereby a process in or change of an entity is given as the endpoint of an inter-

action, rather than the target entity itself. If it is not clear how this works, remember

that the replacement rules work on the string representations of patterns before they

are parsed; all it does is create a new string representation from the original that can be

parsed and compiled independently:

pattern

VB˜˜@AFFECT

( @NSUBJ @NOUN˜˜@AGENT )

( dobj @NOUN˜˜@PROCESS ( prep_of @NOUN˜˜@TARGET ) )

end
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There are many similar examples to this one where even the creation of a replace-

ment rule was unnecessary because of the effects of the noun phrase chunker. For

example, the sentence Entityaa can activate Entitybb expression is matched by the

original, unmodified pattern. Without the chunker, a separate replacement rule would

have been required.

Rule development procedure

Using the LLL training set, I iteratively developed a set of MPL rules that jointly max-

imized precision and recall while still maintaining a degree of flexibility to deal with

unseen sentences. This proceeded as follows, after coding a few simple cases. I would

take the next interaction from the training set that was not yet predicted by Algorithm

II using the current set of MPL rules, and examine its graph structure visually using the

dot program from the Graphviz suite.10 If it resembled an existing pattern sufficiently

closely, I would extend that pattern (using replacement rules or vocabulary additions, or

by relaxing the constraints of the pattern) to match the new interaction. If not, I created

a new pattern to match it in a non-specific manner (i.e. allowing as much flexibility in

the pattern as was practical). Then I would run the algorithm again, to ensure that the

newly-changed or newly-created pattern worked properly, and to check for false pos-

itives incurred. If any false positives had been brought about by the changes, I would

tighten up the pattern constraints until they disappeared. Then I would move on to the

next unpredicted interaction.

In practice, I allowed a small number of false negatives due to apparently erroneous

annotations in the training data, and a small number of false positives where the alterna-

tive would have been to tailor a pattern so closely to a particular sentence that it lost all

generality. Where there were obvious errors in the training data’s dependency graphs, I

added patterns for both the incorrect version (unless this would cause a large number of

false positives) and the corrected version, if I was able to correct it. Also, where an ex-

isting replacement rule looked potentially useful and productive in a context not found

in the training data, I adapted it to that context if possible. The principle behind these

decisions was to anticipate, as far as possible, plausible syntactic variations similar to

phenomena in the training set, in order offset the shortage of data.

The matching engine

The matching algorithm itself is a fairly straightforward depth-first search. For each

node in the graph, the root node of every pattern in the pattern set is examined to see if

it matches. If it does, two ‘current position’ pointers are created, one into the graph at

the matching node, and one into the pattern at the root node. It then proceeds to the first

child node in the pattern and looks for a matching child node of the current graph node.

10http://www.graphviz.org/
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Figure 4.10: This shows a subgraph pattern on the right matched to a graph from the corpus

on the left. Each POS tag, word and dependency type in the pattern has been matched

to one in the graph, most of them by match rules representing regular expressions (e.g.

@NSUBJ, @PROCESS) but some of them by literal string matching (e.g. VBD, prep of).

The numbers 1–6 show the order of traversal of the pattern (mirrored in the graph) and the

letters a–d show the order in which the nodes were matched.

(Note that this involves matching the dependency types, POS tags and node values.)

If one is found, the algorithm advances its pointers so that the two matching children

are now the current nodes, and repeats the process (keeping a record of where it has

been in both structures to avoid accidentally matching the same node twice). If it runs

out of child nodes from the pattern, it has successfully come to the end of a branch in

the pattern, and backtracks up both the pattern and the graph until the start of another

unmatched pattern branch is found, from where it can continue the process. When it

reaches the root of the graph without finding any more unmatched pattern branches, the

match is complete. If, on the other hand, it ever reaches a state where there is another

child node to match from the current position in the pattern, but the current node in the

graph has no matching children available, the match fails.

This process is illustrated in Figure 4.10. The basic method is complicated slightly

by the fact that a pattern can match more than once starting from the same node in

a graph. These situations become possible when more than one child of the current

graph node can match the next child from the pattern. If this is the case, the current

state of the solution (the pointers and history) is cloned so that there is one solution for

each of the matching children. These are then extended down their respective branches

individually.

Once all matches between a pattern and a sentence have been found, the matching
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engine outputs a set of ������ ������ � pairs consisting of the entity names cor-

responding to the pattern’s @AGENT and TARGET placeholders at each distinct match

position. Note that since each node can be an entire chunked noun phrase, sometimes

containing several entities (e.g. X and Y genes), it is possible for multiple distinct

matches to be reported for the same set of nodes within a sentence’s graph, when one

node provides several agents or targets. Each of these ������ ������ � pairs is

recorded as an interaction in the LLL file format.

Overview of experimental protocol

One aspect which sets Algorithm II apart from Algorithm I is that there is a degree

of manual work required in the initial stages. Rather than adjusting the algorithm’s

parameters automatically in response to sample data, I used the LLL training data as

examples from which more general rules could be derived. Nonetheless, the pattern

development process described above and illustrated in Figure 4.11 could be considered

analogous to the parameter optimization procedure in Algorithm I, in that they both rely

on an iterative, empirical cycle of refinement. When viewed as a high-level workflow

abstracted from implementation details, the actual testing process for Algorithm II on

unseen sentences (Figure 4.12) is almost identical to that of Algorithm I (Figure 4.5).

4.4.2 Results and discussion

The rule development procedure resulted in an MPL file containing 82 pattern defini-

tions for seed patterns (those explicitly written rather than automatically generated), 67

match rules and 59 replacement rules. After pattern expansion, there were a total of

505,352 patterns, indicating that on average 6,162 new patterns were created for each

original pattern. These patterns covered the training data with a precision of 97.5 and

a recall of 96.9, for an F-measure of 97.2.

I processed the LLL test set using these patterns, and submitted the results to the

LLL website for scoring based on both sentence types together. Although they achieved

an excellent precision of 90.9, the recall was only 24.0, giving an F-measure of 38.0, a

large and somewhat surprising reduction compared to the training set. Although I had

expected some performance difference between training and test, the degree of recall

loss was surprising; given that there were half a million patterns after the pattern expan-

sion process, I had expected better coverage of the problem space. Using F-measure as

an overall indicator, these results were slightly better overall than Algorithm I’s worst

run high-P (see Section 4.2.2), but lower than its other two, lower than Group 6’s com-

parable run without manual annotations or sentence segregation (see Section 4.1.2)

and considerably lower than those presented by Giuliano et al. (2006) and Fundel et al.

(2007). Looking at the rather limited output of the LLL scoring service, I discovered

that my system had only made 22 predictions, with 2 of those turning out to be false
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Figure 4.11: Overview of data preparation and MPL pattern development protocol for

Algorithm II. Shaded rectangles represent data and rounded boxes are actions. The iterative

rule development cycle continues until the pattern matcher achieves as close to perfect

accuracy as possible.
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Figure 4.12: Overview of data preparation and evaluation protocol for Algorithm II. Shaded

rectangles represent data and rounded boxes are actions.
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positives. It had predicted 3 out of 5 regulon membership interactions correctly, but

only 1 out of 23 molecular (physical) interactions and 16 out of 55 gene regulatory

interactions.

Probing the problem space

The LLL organizers had decided to withhold the correct answers from the public in

order to avoid tainting their status as a completely blind test set. Partly out of respect

for this decision, and partly due to time and skill constraints, I decided not to make

a detailed manual inspection of the test set. However, leaving this result without any

further analysis would prevent any lessons being learnt from Algorithm II. I decided

that an interesting experiment would be to start with a basic set of MPL rules capturing

some fairly straightforward syntactic structures, and measure their results on both the

training and test sets, thus getting an idea of how many of the 20 correct predictions in

the test set were down to simple, broadly applicable rules. Retaining all the match rules,

I stripped out all the replacement rules that make structural changes to patterns, and all

the patterns that were marked as complex phrases, found in one training sentence only,

or designed to cope with a known error. This left a base set of 29 seed patterns and

47 replacement rules, very few of which actually applied to the base set of patterns, as

only 72 patterns existed after expansion. This basic set scored � = 100.0, � = 31.0, �

= 47.1 on training, and � = 100.0, � = 14.4, � = 25.2 on test. In other words, more

than half of the correct results achievable with half a million patterns on the test set had

been recovered with just 72 patterns.

Going back to the MPL definitions once more, I added two simple replacement

rules to allow common variations on agent and target names:

replace @AGENT = @PROCESS ( prep_of @NOUN˜˜@AGENT )

replace @TARGET = @PROCESS ( prep_of @NOUN˜˜@TARGET )

Since @PROCESS is defined to match any word, these replacements allow a pattern

representing A inhibits B to also match A inhibits production of B, Expression of A

inhibits B, and Expression of A inhibits production of B.

These increased the total number of patterns to 228, and achieved � = 100.0, �

= 43.4, � = 60.5 on training, but exactly � = 90.9, � = 24.0, � = 38.0 on test. This

was the same score profile on the test set as the initial run with the full rule set, and

indeed turned out to consist of the same set of predicted interactions. The results for the

original parameter set and the two cut down versions are summarized in Table 4.10. I

have also summarized the test set score breakdown by interaction category provided by

the LLL scoring service, for min and max only since med’s output on test was identical

to max’s—see Table 4.11.
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Scores on LLL corpus for Algorithm II

Pattern Seed Final Training set Test set

set patterns patterns � � � � � �

max 82 505,352 97.5 96.9 97.2 90.9 24.0 38.0

min 29 72 100.0 31.0 47.1 100.0 14.4 25.2

med 29 228 100.0 43.4 60.5 90.9 24.0 38.0

Table 4.10: Algorithm II’s relationship extraction scores (precision, recall and F-measure)

on LLL corpus, training and test, hardest subtask. max is the original pattern set scoring as

high as possible on the training set; min is the minimal set of commonly-found patterns in

the training set, without complex replacement rules, and med is the minor extension of min

which does as well as max on the test set.

Scores by category on LLL test set for Algorithm II

Genetic Physical Regulon

Pattern set � � � � � � �

max 94.1 29.1 100.0 4.3 100.0 60.0 1

min 100.0 16.4 - 0.0 100.0 60.0 0

Table 4.11: Algorithm II’s precision and recall on each interaction category in the LLL

Challenge test set, and the number of false positives produced for sentences without in-

teractions (�). Categories in which no predictions were made cannot have a precision

score since this would mean dividing by zero. Bear in mind that the relative sizes of the

interaction categories are roughly in the ratio 68:25:7 in the order given here.
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Revised scores on LLL test set for Algorithm II

Pattern Seed Final Test set (website) Test set (local)

set patterns patterns � � � � � �

max 82 505,352 90.9 24.0 38.0 92.6 31.2 46.7

min 29 72 100.0 14.4 25.2 100.0 19.2 32.3

med 29 228 90.9 24.0 38.0 92.6 31.2 46.7

Table 4.12: Algorithm II’s relationship extraction scores (precision, recall and F-measure)

on LLL test set, hardest subtask. Pattern sets are described in Table 4.10. This table shows

the differences in scores reported on the same task, between the LLL Challenge scoring

service and the local fully-annotated test set supplied later.

Error analysis on LLL test set

Early in 2008, several months after this experiment was completed, the LLL Challenge

organizers agreed to share the gold standard version of their test set—complete with

details of the correct interactions for each sentence—in advance of an enhanced public

release. Although time constraints meant that a detailed comparison of the two sets was

not practical, the new data did enable me to investigate the serious recall differences

suffered by Algorithm II between the training set and the test set.

The first interesting phenomena was that the scores achieved by Algorithm II’s

three runs as reported by the LLL Challenge’s website—shown in Table 4.10—did

not match those reported by the LLL scoring program when run locally on the fully-

annotated test set. These are shown in Table 4.12. The reasons for this apparent

improvement are not clear—a manual comparison of Algorithm II’s output and the

answers in the test set yielded scores which agreed with the local scoring program.

The LLL organizers did remove one mis-annotated sentence from the test set after the

original release, but this cannot explain the increase in recall since my algorithm did

not make any predictions on this sentence. This difference may be due to bugs in the

web scoring service or differences in the interpretation of the scoring rules (see below)

between the two implementations.

Looking next at the interactions which Algorithm II missed, using the med pattern

set, it is possible to make a few interesting observations. Of the 32 sentences which

yielded at least one false-negative prediction, half relied on co-ordinating conjunctions

(and/or). This indicates that more work on co-ordinated patterns and a thorough ex-

amination of parser behaviour on these sentences would be of benefit, especially since

many of these unrecognized structures contained three or more actual interactions and

thus affected recall severely. Almost a quarter of the problematic sentences contained

an agent or target in an appositive structure like another gene (X) or Y, a protein, sug-

gesting that this is another area worth investigating. The fact that the max pattern set
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missed as many of these particular constructions as the med set, despite having 200

times the number of patterns, indicates that the expansion rules used in max were not

effective at generating variant patterns covering these phenomena and will need to be

revisited. Some of the false negatives, but surprisingly few, were due to unexpected

words such as occur, mapped or utilize governing an interaction. The narrowness of

the vocabulary encountered was helpful in this regard.

Subtle differences in the semantics of a ‘true positive’ between different experi-

ments are common in NLP research, and inspection of the annotated test set provided

two distinct illustrations of this. Firstly, three sentences in this set contained doubled

interactions between the same agent and target, for example when one protein acti-

vates or represses transcription of different genes by another. My algorithm collapsed

multiple relationships in the same direction between two entities into single interac-

tions, although in hindsight this was a mistake. The LLL criteria required these to be

reported separately, and the precision problems which caused me to collapse them in

Algorithm I (see Section 4.2.2) would probably not have applied to Algorithm II. The

other example comes from a sentence describing three genes that do not interact, in a

neither... nor... co-ordination. Whether these should be included or not (also discussed

in Section 4.2.2) was not clear from the instructions; I chose to disregard them as this

seemed intuitively correct, but it seems that the LLL organizers expected them to be

reported.

Unlike Algorithm I, Algorithm II is not very tolerant of small errors in the graphs.

Apart from errors that can be identified or predicted in the pattern development stage,

a single mistake in a subgraph will stop the appropriate pattern matching to it. Perhaps

that one reason alone will restrict it to a high-precision, low-recall niche, at least in its

current form.

Discussion

Although the performance difference between min and med demonstrate the benefits

achievable by a small number of replacement rules, these rules are currently rather

limited in their abilities. They cannot change two separate parts of a pattern at once,

for example, nor can they change one part of a pattern conditionally on the value of

another part. Furthermore they cannot insert a new node at any point of a subgraph that

isn’t a leaf node, because they have no way to reattach the moved material with correct

bracketing. Take for example the following two patterns:

pattern

VBN˜˜@AFFECTED

( agent @NOUN˜˜@AGENT )

( @NSUBJPASS @NOUN˜˜@TARGET )

end
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pattern

VBN˜˜@APPEARED

( xcomp VBN˜˜@AFFECTED ( agent @NOUN˜˜@AGENT ) )

( @NSUBJPASS @NOUN˜˜@TARGET )

end

There is no way to turn the first into the second by applying a replacement rule,

even ignoring whitespace. A rule could replace @AFFECTED in the first pattern with

@APPEARED ( xcomp VBN˜˜@AFFECTED but that would leave a missing right

parenthesis after the agent. Of course, one could write a rule that replaced the root and

whole agent branch of the first pattern, but that may as well be a new pattern in its own

right. In consequence, an insufficiently wide selection of seeds will leave parts of the

syntactic space unreachable, no matter how many combinations of replacement rules

are applied.

4.5 Algorithm III

In order to put the results of Algorithms I and II and the other groups in perspective,

it is important to consider what can be achieved on the same task by a very simple

approach—an ‘intelligent baseline’ using a minimum of common-sense rules. Group

2’s high-recall entry in the original task provided a baseline of sorts, showing what

could be achieved by predicting an interaction in each direction between each pair of

entities in the same sentence, achieving a recall of 98.1 (due to entity pairs with multi-

ple interactions in the gold standard) for a precision of 10.6. This is a somewhat limited

benchmark as it provides no useful frame of reference for precision. Also, scores were

only provided on the easier subset of sentences, which did not include trickier grammat-

ical phenomena like co-reference and ellipsis. To address this requirement, I designed

a simple algorithm which does not take into account any grammatical information at

all—constituents, dependencies or even POS tags.

4.5.1 Methods

The algorithm begins by locating each pair of entities in a sentence which have an

interaction verb between them. Proximity is not taken into account, so there can be any

number of words (including other entities) between the interaction verb and each entity.

The verb list was extracted from the list of verbs used in the MPL files for Algorithm II.

The algorithm then predicts an interaction for each of these pairs. The entity before the

verb is used as the agent, unless the verb ends in -ed and is followed immediately by

the word by, in which case the entity after is assumed to be the agent. This algorithm
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Scores on LLL corpus for Algorithm III

Sentence set � � �

Training (original) 38.8 30.3 34.0

Training (expanded) 35.0 30.3 32.5

Test 53.5 45.7 49.3

Table 4.13: Algorithm III’s relationship extraction scores (precision, recall and F-measure)

on LLL corpus, training and test, hardest subtask. The original training set is that which is

supplied by the LLL organizers, without modifications; the expanded set also includes the

77 extra sentences without interactions which were gathered from MEDLINE.

took less than a day to design and implement, after which I ran it on the full training

set (both with and without the additional non-interaction sentences) and on the full test

set (via LLL’s web scoring service for consistency with prior results).

4.5.2 Results and discussion

The results are shown in table Table 4.13 and are somewhat surprising. Although

the training set scores were unremarkable, the result on the test set were much better,

contrary to my expectations. A decrease in performance when moving from training

to test is to be expected if knowledge of the contents of the training set has been used

to guide the development of a solution to the task, as in Algorithms I and II, due to

over-fitting to the idiosyncrasies of the training set. Such an increase in performance

is harder to interpret clearly, but it does tell us several things.

Firstly, the scores on the test are very impressive given the simplicity of the al-

gorithm. Comparing F-measures alone, Algorithm III is better than any of Algorithm

II’s runs, all but one of Algorithm I’s, the only team in the original challenge which

attempted the hardest version of the task, and indeed all but three of the official runs

on any version of the task. Although it is not certain that a system optimized for F-

measure is necessarily the best solution for a real application (see Section 5.2.2), this

result nevertheless casts the previous results in a new light. One might use it to question

the wisdom of using complex methods for such a task, and especially inductive-logic

approaches like the majority of the entries in the challenge—at least with such a small

training set. Of course, the much higher F-measure (72) achieved by Fundel et al.

(2007) is an obvious counter to this question. A more reasonable interpretation would

be that acceptable results can be achieved quickly on an IE task with a minimum of

effort, and that from an implementation perspective, this means a working system can

be constructed quickly and put into production while more sophisticated methods are

perfected.

Secondly, it follows from this result that the training and test sets do differ sig-
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nificantly in terms of the distributions of syntactic phenomena used to express their

interactions. Since the algorithm was designed without any particular reference to the

training set and thus had no opportunity to suffer over-fitting, one would have expected

roughly equal scores on the training and test sets, if their syntactic composition was

similar. A potential source of ‘design bias’ still exists, given that the list of interaction

verbs was partly based on the training set, but of course any small effect here would be

in favour of the training set results, rather than against them.

Finally, the precision of the algorithm on sentences without interactions is very

impressive, given its simplicity. Out of the 77 new sentences in the expanded set which

contained no interactions, the algorithm only produced false positives in four of them,

although this must be tempered by the fact that out of the original 77 training sentences

with interactions, it failed to predict any interactions in 35 of them. However, taking

these numbers together still means that the algorithm achieved � = 94.8 and � = 67.6

at the simpler task of detecting which sentences contained interactions at all (regardless

of the actual interactions predicted). A potential application of this algorithm, then, is

as a pre-filter before using a noisier second pass to actually extract interactions. A

simple step like this would have almost certainly benefited the test set precision of any

of the original teams in the LLL Challenge, who trained their systems on data with no

non-interaction sentences.

4.6 Concluding remarks

Despite its best F-measure on the LLL test set being worse than Algorithm I’s and

Algorithm III’s, I nonetheless believe Algorithm II has much more potential for devel-

opment. It seems further exploration of Algorithm I’s parameter space is unlikely to

yield much better results, and Algorithm III is of most use as a comparative baseline,

a sentence classifier or a stopgap solution. Furthermore, there are obvious extensions

to Algorithm II’s method that would not be hard to implement. The shortage of seed

pattern coverage could be addressed by using a larger dataset for development, and

automatic pattern induction methods could then be explored next to manual construc-

tion. Comparison of pattern recognition performance between noisily parsed text and

human-annotated text would test the theory that minor graph errors are responsible for

a disproportionate number of missed interactions.

The recall issues could be addressed by extending the syntax of MPL to allow

matching of lemmas (canonical forms) as well as literal words and regular expres-

sions. Further benefits could be achieved by using similarity measures such as tree or

graph kernels to allow probabilistic identification of subgraphs indicating relationships,

based on the degree to which they resemble the patterns supplied, but without requir-

ing exact matches. This kind of solution would have some aspects in common with a

different paradigm in information extraction, which eschews explicit syntactic patterns
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in favour of feature sets describing the syntactic phenomena present in a sentence at

various levels of granularity, and classifiers trained to detect combinations of features

characteristic of genuine relationships. This approach has made considerable headway

in mainstream NLP research where training data is much more widely available (e.g

Culotta and Sorensen, 2004; Bunescu and Mooney, 2005; Zhou et al., 2007); similar

methods are beginning to appear in biomedical experiments, with varying degrees of

success (Xiao et al., 2005; Eom et al., 2006).

Similarly, an approach based on inductive logic like that of Group 6 in the LLL

Challenge could also be applied to Stanford-style dependency graphs, and would be

more likely to flourish without human-assisted input if it had more training data. Thank-

fully the recent release of a large (by LLL standards) corpus with integrated semantic

and syntactic information in Stanford dependency format (see Pyysalo et al., 2007b,

and Section 5.1.2) gives these ideas the opportunity to take shape. One must also re-

member that the size of the LLL test set is small (87 sentences) and the opportunity to

do more thorough testing on more data, including �-fold cross-validation, will help to

elucidate the robustness and limitations of each approach further.

Taking the broader view, an important factor in Algorithm II’s favour is its exten-

sibility. Developers can begin adapting it to new domains by learning the syntax of

three simple language constructs, and typing in some vocabulary and a few seed pat-

terns. Nothing in its design ties it to gene regulation or genomics in general, or to

bi-directional or two-entity relationships. Construction of patterns matching predicates

with multiple agents or targets would be straightforward, as would the extraction of

other semantic roles such as ‘source’, ‘manner’ or ‘instrument’. Defining a new pat-

tern list requires no coding skills, although the matching engine has the capability to

accept post-processing modules written in Java should functionality outside the scope

of the Metapattern Language be required.
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Chapter 5

Conclusions and discussion

This project spans four years of work on natural language processing in the biologi-

cal domain, with its roots in the two years prior to that during which I was working

on biomedical document management and information retrieval. Over that time, the

field has grown at a remarkable rate (see Figure 1.1) and has changed significantly

with the introduction of various corpora and benchmarking standards, several regular

workshops and meetings, and a diverse range of freely-available tools and services, so

that one need no longer be an NLP specialist to engage in text mining in the biological

domain. However, it is still a young field, the problems tackled by biomedical NLP

researchers are far from solved, and in many cases, the best avenues of inquiry are yet

to be determined.

Each of the preceding chapters has described a self-contained experiment in bio-

logical NLP, with an overall focus on parsing and its applications to information ex-

traction. Discussions of the results for each one along with pointers to related work

and other relevant remarks have been presented already. In this chapter, I will begin

by evaluating the project as a whole with reference to its stated aims and highlighting

some important lessons learnt. I will then analyse some important aspects of system

design that are rarely if ever discussed, particularly in experimental contexts—the so-

cial and epistemological factors that can make all the difference between irrelevance

and usefulness, and between theory and application.

5.1 Outcomes of this project

As stated in the Section 1.11, the objective of this project was “to improve the cur-

rent state of the art in biological IE with the application of novel methods grounded in

computational-linguistic principles.” Already, the appearance of several citations sug-

gests that this has begun to happen. At the beginning of this project, there had been

very little recent research on syntax in biomedical text, but the published versions of
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my two parser evaluation experiments (Clegg and Shepherd, 2005, 2007a) have been

identified as the forerunners of a recent spate of papers (Cohen et al., 2007)—one of

which (Pyysalo et al., 2007b) was directly inspired by our advocacy of the Stanford de-

pendency scheme as a syntactic lingua franca. The authors also adopted the Charniak-

Lease parser on account of our success with it. We have been cited in three papers on

the adaptation of various kinds of NLP tools to the biomedical domain (Buyko et al.,

2006; Hara et al., 2007; Pyysalo et al., 2006b), one on adapting the Charniak parser to

a different corpus of general English (McClosky et al., 2006), and one on the analysis

and reconstruction of coordinating conjunctions in GENIA (Shimbo and Hara, 2007).

References have also appeared in a bioinformatics textbook (Sætre et al., 2006) and a

PhD thesis on medical text summarization (Elhadad, 2006).

Clearly, then, there is a burgeoning wave of interest in tackling biomedical-domain

problems with syntactic parsers, and this project was at the forefront of it. It provided

the first thorough, competitive and impartial analysis of the effects on parsers of the

differences between biomedical and general English. It also presented some alternative

syntactic evaluation techniques that, I would hope, are still in use long after the actual

evaluations they were designed for are obsolete. The most far-flung reference to any

of this work, however, came from the field of English-Chinese machine translation,

much to the surprise of everyone involved. The paper was titled “Learning to parse

bilingual sentences using bilingual corpus and monolingual CFG” (Huang and Chang,

2006), and was concerned only with the texts of news reports; the authors had used my

statistics on production rule frequencies in the PTB to train a parser. It is gratifying

to know that one’s work can be useful to researchers so far from one’s own speciality,

especially when they have serendipitously made use of some minor supplementary data

that was only published for the sake of completeness.

On that note, the original experiment from which that data came (Clegg and Shep-

herd, 2005)—the predecessor of Chapter 2 of this thesis—aimed not only to evaluate

the performance of several treebank parsers side by side, but also to try several voting

and parse combination techniques to build a consensus parse that was more accurate

than any one of the parsers could achieve individually. Some of the results were statis-

tically significant but too marginal to be of any practical use, so I decided not to include

that part of the experiment here as the work required to bring it up to date would have

been out of proportion to its practical value. However, it remains of theoretical interest

and could plausibly be applied to other problems. The paper also contains some po-

tentially useful statistics on GENIA and the PTB, and the differences between the two,

and is archived for reference at http://biotext.org.uk/.

The work on the LLL corpus was not published before the completion of this thesis,

and now that the BioInfer corpus (see below) has been made available—and indeed tai-

lored to our specifications—those results may never be published, in their current form

at least. The sophistication of BioInfer’s semantic annotation makes the untyped binary
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relationships in LLL seem slightly outdated. Nonetheless, Chapter 4 accomplished

what it set out to do by demonstrating the practicality of an IE framework based on

treebank parsing and the Stanford dependency tools. Algorithm I outperformed most

of the systems used in the original challenge, without using any hand-edited linguistic

data or artificially segregating the sentences into different classes—in terms of achieve-

ments relevant to real world applications, it came out on top. This was despite the fact

that its simplistic mapping of dependency structure to semantic structure was guided

by a process that can best be described as high-throughput trial-and-error. This ease

of implementation reflects the intuitively graspable and computationally tractable na-

ture of the dependency graphs. Algorithm II’s more subtle and principled approach

was hampered by lack of development time and annotated data to base examples on,

but some opportunities for expanding its scope are discussed below. Furthermore, its

extensible and open-ended design philosophy will, I hope, encourage other researchers

to adopt it and adapt it, and find uses for its high-precision capabilities. As with all the

code written for this project, it is available from the URL above.

Although Algorithm III’s non-syntactic strategy proved surprisingly effective, and

will perhaps be of practical benefit (see below), the fact that all of my results were

beaten by a system using a treebank parser, Stanford dependency graphs and handwrit-

ten rules (Fundel et al., 2007) is somewhat reassuring. It vindicates my hypothesis that

this previously untried combination holds potential for biomedical IE. LLL was a small

and highly constrained task, however, and it remains to be seen how transferable any

one implementation of this strategy is to the next generation of data.

5.1.1 Implementation recommendations

Although testing new algorithms on standardized benchmarks is vital, the ultimate goal

of bioinformatics research must be to develop tools or methods that can be usefully

applied to real data. The previous chapter produced two important practical recom-

mendations. The first is that a naı̈ve, knowledge-poor solution built in under a day

can tackle a simple genomic interaction extraction task with results comparable to the

most sophisticated of methods. The steps involved (given a list of interaction verbs)

are summarized as follows:

1. Begin with a corpus of sentences without any metadata.

2. Process the text with a named-entity recognizer and replace any entity names

found with unambiguous single-word placeholders. Named entity recognition

is not the focus of this thesis, and indeed this step was trivial with the LLL

dataset, but a discussion of this task and a practical walk-through is provided in

Appendix A.
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3. Mark every pair of entities in a sentence with an interaction verb falling anywhere

between them.

4. Predict an interaction involving this pair of entities.

5. If the verb ends in -ed and the next word is by, the entity after the verb is the

agent; else, the entity before the verb is the agent.

However, this approach is limited to very simple tasks and cannot be easily tuned

for precision or recall. If a high-precision solution is required, or interactions more

complex than simple directional pairs are sought, then a suitable pipeline can be built

using only freely-available components and a little engineering. The steps are summa-

rized below:

1. Begin with a corpus of sentences without any metadata, and mark all entities as

above.

2. Parse the text with the Charniak-Lease parser and chunk all multi-word noun

phrases in the parse trees into single nodes.

3. Translate the trees into dependency graphs using the Stanford NLP toolkit.

4. Design or adapt MPL patterns to capture the relationships of interest in your

domain. For tasks of a similar nature to the LLL Challenge, it is likely that the

patterns developed for this project will yield reasonable results.

5. Search the dependency graphs for matching subgraphs using the algorithm de-

scribed in Chapter 4, recording the agent and target of each successful match.

If a high-recall solution is required, this may be achieved by asserting an interaction

between each pair of entities in a sentence; the low precision of this method could be

somewhat ameliorated by ignoring all sentences which don’t contain an interaction

keyword anywhere. The interplay between precision, recall, degrees of certainty and

notions of truth will be returned to in the following sections.

All the source code written for this thesis is available from http://biotext.

org.uk/. This includes Java implementations of Algorithms I and II from the previ-

ous chapter, and a Perl implementation of Algorithm III, along with additional mate-

rials such as MPL definitions, and will be refined and added to as new developments

take place. I am of course keen to hear suggestions or criticisms.

5.1.2 Opportunities for future development

During the course of this project, I was somewhat frustrated by the lack of cohesiveness

of the annotated corpora available in the biological domain. For example, GENIA has
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named entities and POS tags, as well as constituent trees for a subset of sentences, but

the treebank is in a different set of files from the entity annotation—and my attempts to

merge them were thwarted by overlapping boundaries and discrepancies in tokenization

and tagging. The same is true of BioIE, which at least is kind enough to flag sentences

with inconsistencies between the two annotations, but it has a subtly different treebank

format and set of annotation guidelines from GENIA, making interoperability diffi-

cult. Neither GENIA nor BioIE have semantic relationships between entities. LLL’s

enriched datasets have gene and protein entities and the relationships between them,

word lemmas, and syntactic structure, which is definitely progress. However, they

don’t have POS tags, just five ‘morphosyntactic categories’ which are very broad and

not rigorously applied. The syntax annotation is based on the Link Grammar, which is

unorthodox and not directly compatible with other tools or formalisms, and has been

simplified by the LLL organizers so it no longer even corresponds with Link itself.

And LLL is small by the standards of other corpora (77 sentences in the training set).

These limitations constrain both the flexibility of the evaluation protocols that can be

performed, and the techniques available to perform them.

The 1,100-sentence BioInfer corpus (Pyysalo et al., 2007a), which was released

while I was testing Algorithm I, addressed most of these issues and many other seri-

ous deficiencies in the previous generation of corpora. It contains unified annotation

for syntax, entities and relationships, as well as coreference and ellipsis phenomena.

There are no POS tags unfortunately, but tokenization is fairly sophisticated, with se-

mantically distinct subtokens as in Arp2/3 marked. Entities and relationships are both

ontologically typed, and annotated to the best level of specificity available, unlike LLL

which only has one type of entity and one type of relationship. Processes and functions

are entities, as are some abstract concepts like amounts and expression levels. Rela-

tionships can have more than two arguments, or even just one, and each instance of a

relationship is treated as an entity and can be used as the argument to a predicate:

MEDIATE(VEGF receptor 2, ACTIVATE(neuropilin 1, VEGF165 function))

This means that VEGF receptor 2 mediates the activation of VEGF165 function by

neuropilin 1 . The relationship ontology also contains some less concrete relationships

like EQUAL, CONTAIN and MEMBER.

Sampo Pyysalo from the BioInfer group contacted me just before the release of the

corpus, expressing interest in my work on the Stanford tools, and a few months later

an updated version of the corpus was released with all the Link graphs translated into

Stanford graphs (Pyysalo et al., 2007b). It is unfortunate that this impressive resource

was not available at the start of this project, as its completeness and logical structure
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surpass any of the other corpora available (including those I have seen in ‘mainstream’

NLP), and it models biological reality more closely. In short, it will make a much more

suitable proving ground for further work on the algorithms and concepts presented

here.

Both the parser evaluation/selection stages and the algorithm development stages

of this project could have benefited from access to BioInfer. At the moment one can

only assume that the performance of the Charniak-Lease parser on LLL is roughly the

same as it is on GENIA, since LLL’s syntactic annotation is not directly comparable

with GENIA’s or the parser’s output. The only way to test it would be to attempt

to convert LLL’s Link-like annotation to the Stanford format using BioInfer’s conver-

sion program, which would introduce unquantifiable noise anyway. Another source of

noise in the current experimental pipeline is the Stanford algorithm itself, since with-

out painstaking examination of the trees and graphs, it is impossible to see how many

errors—or at least unexpected decisions—it is making on either the GENIA gold stan-

dard or any of the parsers’ outputs. In BioInfer, the Stanford annotations are manually

corrected, so the parser plus the Stanford algorithm could at least be tested jointly

against a gold standard of truth. However the lack of POS tags would remove one

method of error analysis.

Moving on to semantics, it is easy to suggest strategies for exploiting the additional

richness and size of BioInfer. The availability of entity tags is thought-provoking, es-

pecially if the parser is also combined with a high-quality named entity recognizer. It

should be possible to learn from the corpus the probability of finding each dependency

type governed by each entity type; then a selection of parses could be ranked according

to their level of agreement with the entity recognizer. Parses could also be discarded

if a constituent crossed an entity (like the crossing brackets measure in Chapter 2) or

if the head word of an entity was given a non-noun POS tag. Alternatively, one could

use several entity taggers in parallel, and pick the combination of a parse and a set of

predicted entities that had the highest joint probability of appearing together. This kind

of operation would probably only work with conventional biomolecular entities, not

for example properties of other entities or implicit process entities representing rela-

tionships. Some of these suggestions might be workable on GENIA too if the syntax

and entity annotations were synchronized, and possibly even on LLL in a more limited

sense. Typically, NLP systems are seen as pipelines made up of distinct modules that

are designed, built and tested separately, and which make decisions independently and

in series, but the availability of corpora with integrated semantics and syntax might

challenge that presupposition.

The factors of size and richness would obviously pay dividends when adapting or

replacing the IE algorithms from Chapter 4. Algorithm II would be a natural choice to

work on further, as the availability of more example interactions at the pattern design

stage would enable the recall to be improved, and potentially allow automatic acqui-
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sition of patterns tested by cross-validation. One advantage of Algorithm II is that I

designed it to avoid making too many assumptions about the task, so it does not require

that patterns have exactly two entity roles. It would need to be modified to ignore POS

tags, but that would be trivial, and whether or not noun phrase chunking would be ben-

eficial or even straightforward is unknown, given that it currently works on constituents

and POS tags. There are other features of the BioInfer scheme that could be exploited

instead, such as the fact that relationships are anchored to the word or words that de-

scribe them; in LLL they are more like additional arcs that connect the two entity nodes

without touching the rest of the graph.

Of course, having a larger, cleaner gold-standard to train on might also make sta-

tistical approaches like those used in the actual LLL Challenge feasible, or other tech-

niques not yet imagined. Named entity recognizers will need to be modified or com-

bined to spot nested entities. How to deal with nested relationships acting as conceptual

entities though is very much an open question, and one that will be as challenging as

it is fascinating. It seems likely that a number of these will correspond neatly to sub-

graphs, and clauses in the parse tree, as in induction of X by Y inhibits Z. How many

won’t, and how to process them, will require careful analysis and planning and will

certainly entail new science.

5.1.3 Practical lessons learnt

While it is true that more complex and expressive corpora will require correspond-

ingly sophisticated algorithms, NLP projects also have a tendency to stall in unex-

pected places because of unforeseen problems at less glamorous levels. Seemingly

trivial implementation details like character sets, file formats, tokenization, punctua-

tion conventions and alternative representations for special characters can all cause a

disproportionate amount of extra work. This is particularly true when performing a

broad comparison of several different tools. Quite often, two systems will produce (or

require) linguistically-compatible datasets that are nonetheless very different from a

program’s perspective. A few representative examples, which correspond to weeks of

ugly and unrewarding scripting and bug-hunting, will illustrate this point.

Although parsers take essentially plain text and turn it into syntax trees, this is not

exactly true. Each parser has slightly different requirements for the presentation of

that text (leaving aside the question of whether the text must be POS-tagged already or

not) and these can cause serious issues. In the initial run of the experiment in Chapter 2

(Clegg and Shepherd, 2005), an earlier (2003) version of the Charniak parser was used.

As well as assigning POS tags internally, this version also performed its own tokeniza-

tion on the input text. While this does not immediately seem like a potential source of

error, many atomic terms in the GENIA corpus have internal punctuation, causing spu-

rious token boundaries. These include such examples as 5 �, SKW6.4 , 1,25(OH)2D3,
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mol/l and IL-1/tumor. Indeed, there are several similar examples in the PTB, such as

one-shot , O’Brian, and US$ , and inverse examples like 75 % which the other parsers

(and the gold standard) considered to be two tokens, while the older Charniak parser

‘glued’ them back together into one. In order to sidestep Charniak’s tokenizer and en-

sure that the tokens in each parser’s output aligned with each other and with the test

data, these strings were converted into strings of characters (such as XcommaX) before

passing them to the Charniak parser, and back again once the parse was complete.

However, it was brought to my attention eventually (M. Lease, Brown U., pers.

comm.) that my scores for this parser on the PTB were slightly lower than previously-

published results. This seemed to be as a result of these punctuation substitutions

leading to inconsistent POS assignments for the words they occurred in, and hence

errors in the resulting trees. Although a full analysis of this phenomenon was deemed

to be outside the scope of this investigation, upgrading to the 2005 versions of the

parser led to scores on the PTB that are consistent with those reported by other authors.

These versions include a command-line switch to disable the tokenizer, thus telling the

parser that the character stream should be split up only on whitespace. This was used in

all the runs in Chapter 2. By then, however, the damage—in terms of lost development

and testing time, and discrepancies in published results—had been done. While this is

an extreme case, practically all NLP tools have certain characters in the input data that

must be escaped or replaced with placeholders, and the list of characters in question

(and the correct way to deal with them) is not always documented.

These experiences support the argument for modularizing NLP tools, as does the

improved performance on biomedical text that was achievable by decoupling the POS

tagger from the parser in the Charniak-Lease parser compared to the original Charniak

versions. However, there is a difference between a single tool that performs several

functions in a pipeline, which loses nothing by decoupling those functions, and a tool

that makes predictions or resolves ambiguities in different levels of annotation in paral-

lel, via iterative processes or joint probability distributions. I suspect that the availabil-

ity of corpora with integrated syntactic and semantic annotation will facilitate a new

strand of research in this area.

Similar character-level issues have been widely observed in a current project in

collaboration with two MSc students, who are using Algorithm I from Chapter 4 for

reconstruction of regulatory pathways from corpora of full-text papers. The papers

have been, for the most part, converted from PDFs using automated tools, and the

resulting poor text quality is the source of many errors. Hyphens at line breaks are

not always removed by the conversion process, so words that were split across lines

in the PDF have hyphens in the middle. Furthermore, sometimes these are not 7-bit

ASCII hyphen-minus characters but more exotic glyphs that cause certain NLP tools to

fail without error messages. Spaces are sometimes removed from sequences of words,

making parsing completely impossible, and typographical ligatures for fi and fl are
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not always converted back to their constituent characters. Orthographic issues aside,

the content of full-text articles leads to problems for tools trained or developed on

the cleaner world of MEDLINE abstracts. Authors’ names can look very much like

gene or protein names to named entity recognizers, for example, as can many other

strings found more often in whole articles than in abstracts—particularly other proper

nouns like strain identifiers, locations, company names, and trade names of reagents

or equipment. These problems are not glamorous, but while NLP tools are trained

and tested on abstracts alone, their uptake amongst the biomedical community will be

limited by such accuracy and robustness failures.

The issue of robustness in the face of ‘dirty’ data is a broader one. One way of

characterizing Algorithm II in Chapter 4 is that its pattern set was derived from the

modeling of correct and familiar subgraphs, with the addition of replacement rules al-

lowing it to relax its constraints in a controlled manner to allow correct but unfamiliar

subgraphs, and only allowed for actual errors on a case-by-case basis. Contrast this to

Algorithm I, which even in its most methodical first pass did not make any assump-

tions about the linguistic accuracy of the dependency graphs it was operating on, and

provided various fallback measures to increase recall of initially missed interactions—

without distinguishing between errors in the data and deficiencies in its own approach.

Contrast both of these approaches to RelEx (Fundel et al., 2007), which starts with

as many candidate interaction paths as its heuristics have found, without any explicit

assumption of the underlying accuracy of the parses or graphs, and then narrows them

down by the elimination of typical false positives. Both Algorithm I and RelEx suf-

fered drops in F-measure (mainly down to recall) when going from training to test, but

RelEx’s was much more gentle, and neither of them were comparable to the massive

drop encountered by Algorithm II.

Although one must be wary of such simple caricatures of complex systems, the

different requirements they had for the linguistic correctness of the input data—from a

great deal in the case of Algorithm II, to none at all (explicitly) in the case of RelEx—

may well be instructive. As we have seen, the potential sources of error are many

and varied, and in a production system can be rooted in the very earliest stages of

processing. Although there are potential applications for a high-precision system (see

Section 5.2.2), even such tailored solutions will still need to account for a degree of er-

ror in the data, although the LLL test set seemed to give most teams less problems for

precision than for recall. As an aside, the robustness problem provides even more sup-

port to the criticism that optimizing a tool for perfect hand-corrected data (c.f. Group

6 in Section 4.1.2) is rather pointless.
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5.2 Social aspects of text mining

As social activities, biomedical NLP and text mining have certain requirements and

connotations beyond their immediate scientific aspects. The technical aspects of NLP

are well studied, but text mining as a human activity raises several interesting points

that can guide the design of applications and inform the development of useful exper-

iments and evaluation criteria. In order to demonstrate some of these points, I will

introduce two distinct social groups that stand to benefit from biomedical text mining

research, and introduce some examples of different uses to which they would put NLP

technologies in the course of their work. I will use these hypothetical situations to illus-

trate some important distinctions between the needs and goals of these two groups, and

discuss how better to align basic NLP research with them. Note however that very little

of the important points about these two communities is unique to them; these examples

are here to help promote the general aim of understanding the relationships between

technologies and their users.

5.2.1 Typical user communities

Over the duration of my PhD and some time spent working on IR before that, two

groups of biomedical researchers have particularly stood out in their public enthu-

siasm and support for text mining—genomic database annotators and curators, and

drug discovery scientists. Several notable biomedical NLP meetings have had invited

talks from the database curation (e.g. Blake, 2005) and pharmaceutical (e.g. Vachon,

2004) communities, and in conversation I have found both groups to be very posi-

tive on the subject. Interestingly, the same two specialist communities were originally

jointly responsible for Gene Ontology, which started out as a collaboration between

FlyBase, Mouse Genome Informatics and the Saccharomyces Genome Database (Ash-

burner et al., 2000), and was funded by AstraZeneca before any public grants were

awarded (M. Ashburner, pers. comm.). Since then, GO has become an indispensable

tool for bioinformatics and systems biology, and the concepts associated with ontolo-

gies in general have become familiar and widespread in the field. However, these two

groups typically have somewhat different requirements for NLP systems, so I will be-

gin by discussing some typical scenarios.

The pharmaceutical sector

An important part of today’s rational drug discovery process is the pursuit of a greater

understanding of the genomic and biomolecular mechanisms of disease and health.

Alongside structural biology and biophysics, the functional insights yielded by analysis

of the body’s regulatory, signalling and metabolic pathways are crucial to the selection

of novel drug targets, and can shed valuable new light on the biological roles of existing
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targets which enables them to be drugged more effectively or with fewer side effects.

Indeed, similar techniques are applied retrospectively to investigate the hugely expen-

sive failures of once-promising drugs that can severely affect a company’s reputation

and share price. NLP techniques are ideally suited to this kind of pathway analysis

as the required facts might very well be ‘known’ already, albeit spread across diverse

publications spanning multiple topics and decades of research. Also, as we have seen,

information extraction algorithms can produce output in the form of a graph or network

that maps easily onto the underlying biological pathways.

A typical scenario might involve a set of genes that are observed via a microar-

ray experiment to be expressed differentially in healthy and diseased tissue; some of

these genes are modulated by a potential drug. For this information to be of use, a

map must be made of the causal mechanisms connecting them together. Some of the

connections might be standard textbook knowledge and some might be available from

existing databases of protein-protein, gene-gene or transcription factor interactions, for

example. However, one would be very lucky to reconstruct the entire network like this,

without recourse to a tedious trawl through the literature to fill in the gaps. This is

one point of entry for the pharma industry’s interest in NLP research. The collection

of potentially relevant publications may well be large and diverse, spanning genetics,

biochemistry, cell biology, pharmacology, and perhaps even physiology, and any in-

vestment in technology which leads to saved time will pay for itself eventually. Of

course, this scenario is by no means unique to industry, but the scale of automation

available to microarray experiments and other high-throughput assays in the pharma

sector makes managing the associated literature a high priority.

Another NLP application in the pharma and biotech sectors, and one which is per-

haps less familiar to many researchers in academia, is the mining of patent databases.

Before embarking on any major discovery project, or even repurposing an existing ther-

apy for a different disease or class of patient, it is imperative to identify any problematic

overlaps with existing patents. Conversely, competitors’ patent filings are also used in

a business intelligence context, as they can reveal or at least suggest what products

might be in the pipeline and at what stages of development.

-omic database curation

Keeping a post-genomic database resource such as UniProt or FlyBase up-to-date is a

major undertaking, since there is no obligation for bioscience researchers in many fields

to deposit their own data or annotations in such a public resource prior to publication,

and the rate of new publications keeps increasing. Accordingly, curation assistance

tools have been a major focus of biological NLP research for several years now. The

KDD Challenge Cup in 2002 was the first organized public benchmarking of NLP

techniques for the the curation process, and was notable for bringing together language
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engineers and biologists to design a task based on on the needs of the biologists. The

goal was to simulate the FlyBase triage process as accurately as possible. This is the

painstaking but necessary task of examining every new paper from every potentially

relevant journal each month, pick out those that contain experimental results about

Drosophila genetics and rank them by relevance. Then the curators must look at each

individual gene mentioned in the paper and determine whether an observation about its

expression was made with sufficiently strong evidence to warrant inclusion in FlyBase.

The KDD Challenge Cup was a success; 18 teams entered and there were some

remarkably good scores on some of the performance metrics (the winners scored 84%

on the the relevance ranking test). The following year, two more challenges followed in

its wake. The TREC Genomics Track was a more traditional IR competition, designed

to encourage the development of topic-specific algorithms for judging the relevance

of MEDLINE abstracts to query genes. This project was begun with the biomedical

community as a whole in mind. BioCreative, on the other hand, looked at two specific

tasks vital to the next stage of curation, which is distilling unstructured information

about genes and their products in free text into a structured annotation suitable for

entry into a database. This is potentially a very involved process which could throw up

several unsolved or partially-solved problems in computational linguistics—depending

on the complexity and variability of the annotations required, it could entail a degree

of natural language understanding which is beyond current systems. Nonetheless, the

BioCreative organisers recognized the successful detection and identification of gene

and protein names as a fundamental requirement of any such system, and so set such

a task using text about fly, mouse and yeast genetics; F-measures above 80% were

achieved on some parts of the task.

The second task was somewhat more adventurous and open-ended. It involved the

assignment of GO terms to human proteins, and seemed to divide the competing teams

into a high-recall camp and a high-precision camp. In their summary of the results, the

organizers said:

“The majority of users tried to submit a result for each case contained in

the test set. Those approaches focused on obtaining a high recall rather

than a high precision. On the other hand, there were users who submitted

results only for a small number of high confidence predictions to achieve

a high precision. Although for practical use of text mining applications,

high precision is desirable, a reasonable recall is essential, consequently a

compromise between both should be favored.” (Blaschke et al., 2005)

5.2.2 Criteria for success

It should be apparent from these brief sketches that NLP and text mining projects

aimed at different user communities can have different criteria for success, and there-
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fore should not necessarily be evaluated in the same ways. This project has taught

me the importance of well-designed, task-based evaluations. The computational lin-

guistics community is happy to accept papers where, for example, an existing parser

has been tweaked to give it half a percentage point lead in constituent F-measure over

the previous best algorithm (Charniak and Johnson, 2005), but in an applied field like

biomedical NLP such tiny incremental gains are of no interest unless they can pro-

vide a practical benefit—if in fact they represent genuine error corrections at all (see

Section 3.1).

Even within the realms of evaluations based on real-world tasks, there is still a

tendency towards blanket use of balanced F-measure as the key performance indicator,

for almost every kind of NLP software benchmark. Balanced F-measure is convenient

and intuitive—I cannot deny having relied on it in this thesis—but is taken to be the

sine qua non of evaluation for so many diverse tasks that it is easy to forget that this

venerable measure is simply a special case of the weighted harmonic mean of precision

and recall, with the weighting constant � set to 1:

�� �
�� � ����

��� � ��
(5.1)

One rarely sees an ‘unbalanced’ F-measure outside of old information retrieval

textbooks these days (van Rijsbergen, 1979), and while a specialist user of an IR system

might once have wanted to tune this behaviour on a search-by-search basis, none of

today’s consumer IR services like search engines seem to offer this facility.

However, outside of the constrained environments of benchmarking experiments, it

is not at all clear a priori that giving an equal weight to precision and recall is always

necessary or even desirable. Obviously, the world would be a much better place if NLP

systems could consistently achieve 98% precision and recall. But given that this is

currently impossible for most tasks, is it preferable to score (say) 98% on one and 48%

on the other, than to hover around the equivalent 64% for both? The answer depends

on the application and the needs of the users, and the ‘one-size-fits-all’ reliance on bal-

anced F-measure obscures these subtleties. The quote above from the BioCreative team

recommends a compromise, and strongly recommends against favouring precision in

such tasks, but I would like to look at this issue in more detail.

Partially automated systems

There were 1,227 real annotations in the BioCreative GO term annotation test set,

spread across 99 documents (Blaschke et al., 2005). Despite this, the highest-precision

run was so conservative with its predictions that it only returned 26 for the entire test set

(Chiang and Yu, 2004), and several others were of a similar order of magnitude. A cu-

ration tool that is so precision-driven that it only makes a few percent of the predictions
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required will make no friends amongst annotators—even before they have counted the

(admittedly small) error rate on those predictions.

The organizers were correct to say that a reasonable recall is essential in this in-

stance. I would go further, however, and argue that because the kinds of tools that

might come out of a project like BioCreative would be designed to assist, not replace

human annotators—at least in the short and medium term—recall is considerably more

important than precision. The human expert in the loop makes a difference to the kind

of errors that are forgivable, simply because manually removing a false positive (a pre-

cision error) is intrinsically less work than manually correcting one that is close but

wrong, or manually adding one that is missing (a recall error). The algorithms under

test were designed to simulate the needs of a visual curation tool which would be able

to display a GO annotation and the text supporting it, thus drawing attention to errors.

Once an annotator has noticed that one of the predictions on a document is spurious,

removing it is trivial; however, to fix a false negative requires first noticing the omis-

sion (which may or may not be conspicuous by its absence) and then to work out what

the correct annotation should have been.

Obviously, for equal recall scores, higher precision is better, but this seems to be an

example of a situation where high recall and low precision is better than medium recall

and precision.

Recall and full coverage

The need for good recall in database annotation tools is clear, but there are cases where

achieving as close to 100% recall as possible is desirable, despite the corresponding

drop in precision. The corporate patent search application described earlier is one such

example, for business reasons rather than technical ones. Potentially only a single

missed reference to a chemical entity, protein target, delivery mechanism or even a de-

tail of a manufacturing process can lead to costly project cancellations and, potentially,

lawsuits. Small details like orthographic variation in chemical formulae can have seri-

ous implications, if they result in the mistaken belief that a hit compound is patentable,

and of course the well-known variability of gene and protein names (see Section 1.8

and Appendix A) can be a problem here too.

As in the database curation example, this kind of application is by necessity a semi-

automated system as any results will need to be inspected by an intellectual property

specialist. One way to ensure the best possible recall without swamping the user in

false positives is to take a domain-specific IR approach, and rank instead of filter the

results. Hits to substances or methods that the system has confidently identified as

problematic should be presented near the top for immediate action; if they are genuine

prior claims, then any less confident hits further down the list may be rendered irrel-

evant as the project might have to be abandoned or at least substantially revised. In
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evaluating systems like these, single values for precision and recall are less important

than precision-recall dynamics: what is the precision at a number of different cut-off

points for recall? How many of the top � documents are relevant?

Recall through repetition

There are, however, other text mining tasks where it is possible in principle to achieve

good coverage even with a high-precision, low-recall algorithm, because of the re-

dundancy inherent in the scientific literature. Take for example the genetic network

reconstruction scenario described earlier. Unless the network in question pertains to a

very obscure part of biology—unlikely for a pharma company, but not impossible—

there will be no shortage of literature to feed into an interaction extraction program.

MEDLINE, full-text journal articles, and resources from the NLM such as electronic

textbooks and OMIM are obvious starting points, but internal tech reports and white

papers, lab notes, and patent records (one’s own and one’s competitors’) could po-

tentially be relevant too. In these circumstances, high-precision/low-recall approaches

come into their own. With a comparatively meagre recall of 40%, a relationship only

has to be stated in three separate places in the corpus for its chance of being spotted

at least once to reach 78%. (A 60% probability of being missed once implies a �� �

= 22% chance of being missed three times on average, assuming uniform variation of

syntactic expression.) It is not uncommon for the key claim or claims of a paper to

be reported more than three times within the paper itself—title, abstract, introduction

and conclusions—let alone citations, replications and parallel discoveries. Indeed, one

might expect the claims that only appear once in a large corpus to be of somewhat du-

bious provenance anyway. Although simple repetition is not necessarily an indicator

of veracity (see Section 5.3.3), one might not be too far wide of the mark to suggest

claims repeated more times are more trustworthy, at least to a first approximation.

This issue is touched on by Giuliano et al. (2006), in the context of their results

on LLL and other data. They distinguish between OAOD and OARD scoring, for ‘one

answer per occurrence in the document’ and ‘one answer per relation in the document’

(when multiple claims repeated in the same document are collapsed into one). In this

format, LLL’s scoring rules would be described as OAOS or ‘one answer per occur-

rence in the sentence’, a stricter criterion. To this I would add OARC for ‘one answer

per relation in the corpus’ for applications or projects where it is only vital that each

relevant claim is identified once (or at least once) across the whole corpus. In terms of

evaluating new methods, I believe the LLL Challenge’s stringent requirements are jus-

tified, as they give an accurate comparison of algorithms at a granular level. However,

for large-scale extraction projects with significant repetition in the corpus, it might be

more fruitful to use a higher-precision, lower recall algorithm, minimizing false posi-

tives and trusting natural redundancy to assist recall.
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5.2.3 Human interface factors

No discussion of the social aspects of computer systems of whatever sort would be

complete without at least a brief mention of user interfaces, although this is not a topic

that comes up with much frequency in biological NLP discussions. There seems to be

an unspoken feeling in some circles that user interfaces are simply engineering prob-

lems at best, or unnecessary window dressing at worst, and the real science happens

at the level of algorithms, data and statistical models. While it is of course possible to

write software like this, as this thesis demonstrates, it must not be forgotten that the

human brain is one of the most powerful pattern-matching resources we have access

to, and perhaps the most powerful. The field of data mining has grown up hand in hand

with that of data visualization, pushing user interfaces far beyond buttons and lists and

into novel ways to render and explore complex multidimensional data. Text mining has

just as much potential to be treated the same way.

5.3 Epistemological aspects of information extraction

The text of a scientific paper is not simply data, although it may present data and will

likely seek to communicate some important piece of data or aspect of a dataset. Rather,

it is knowledge encoded in written form, and like all human knowledge, might be

incomplete, ambiguous, subject to unconscious bias, inconsistent, obscured by rhetoric

or just plain wrong. Molecular interactions and other ‘facts’ extracted from text are

often portrayed as having a simple binary truth value, right or wrong, and while this is

a convenient approximation for evaluation purposes, it is rather naı̈ve and may not be

satisfactory in large-scale text mining projects. While there is no doubt an underlying

reality which ultimately grounds our beliefs, there are at least two distinct levels of

abstraction at work. Firstly, a statement in a text is not a fact or a truth but a claim

about reality; secondly, any extracted information similarly consists of claims about

a text or a collection of texts. In this section I will attempt to pry apart some of the

causes of epistemological confusion in this area that are usually ignored, glossed over,

or wrongly conflated. It is my belief that as the field matures, considerations such

as these will become more and more important in the design of more sophisticated

systems and evaluation protocols.

5.3.1 Uncertainty in the extraction process

No IE algorithm is, or claims to be, even close to 100% accurate, and most have been

evaluated for precision and recall at some point, giving the user some degree of cer-

tainty in their aggregated results. (The term ‘confidence’ sounds more natural but risks

confusion with the technical meaning from statistics.) However, very few systems give

any indication of certainty on a case by case basis, even though this is often not that
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hard. Algorithm I in Chapter 4, for example, records with every interaction the pass of

the algorithm that captured it. This is a crude measure of certainty, but the users find it

useful, since it means they can choose to filter out the more speculative and potentially

error-prone interactions suggested by the later passes. Not all algorithms have analo-

gous methods by which their internal decision-making processes can be meaningfully

reported on, but levels of agreement amongst ensembles of algorithms can sometimes

be used as a predictor (Clegg and Shepherd, 2005). It is easy to conceive of ways that

this information could be made use of in mining and visualizing the results of large

literature analyses. Of course, the value of this kind of information is proportional to

the precision of the algorithm—or more generally, accuracy, in tasks that do not use

the precision/recall model—since there is little benefit in being certain but wrong. An-

other way of presenting such quality control data is as a prediction about the chance

of correctness of each extracted claim, based on prior performance in evaluation ex-

periments. However, a better term than ‘correctness’ would be ‘verisimilitude’ since a

correctly-extracted claim is not necessarily true.

5.3.2 Trustworthiness of the source

Not all claims in papers or abstracts are equal—the experimental evidence used to

support a claim has an effect on the reception of that claim by the community. In

recent years, for example, debate has raged over whether high-throughput experimental

protocols offer the same quality of evidence as traditional assays, with some claiming

accuracy as low as 50% for yeast two-hybrid experiments (Sprinzak et al., 2003). GO

uses a system of evidence codes1 to (manually) classify the evidence used to justify

assigning a particular GO term to a particular gene or protein; ideally, IE systems would

be able to associate similar metadata with extracted claims, although this is probably

several years away. Currently, most IE systems do not even determine whether the

paper is repeating a claim made elsewhere or presenting a new finding, or even if the

claim in question is framed by a figure of speech like we wish to determine whether. . .

or it is currently not known if. . . . Between these statements of knowledge or intention,

or outright claims of fact, there are a whole spectrum of speculative rhetorical devices

such as these results suggest that . . . which reflect differing levels of author confidence.

Some analysis of these phenomena has been performed (Light et al., 2004) but the

results have yet to make their way into IE applications.

One can even imagine using meta-scientific information such as the quality of the

journal in which a claim is being made as an indicator of its trustworthiness, by com-

paring impact factors, or the experience or reputation of its authors, based on number

of previous publications. On that note, I believe many people would confess to feeling

a little suspicious if all the evidence for a controversial claim came from the originating

1http://www.geneontology.org/GO.evidence.shtml
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group. Such considerations are outside the scope of current research in IE, but these

are common ways that scientists evaluate the credibility of new claims, and there is

no reason why automatic systems cannot be designed to model these methods. The

issue of evidence and traceability is important in other ways too, since it is bad scien-

tific practice to propagate unsourced claims, and users will want to see an IE system’s

sources for any results that they base decisions on. This is irrelevant in experimental

evaluations, but end-user applications must at least provide the facility to display a ci-

tation for each extracted claim and preferably a link to the specific sentence where the

claim was found.

5.3.3 Confirmation and contradiction

It has been mentioned already (see Section 5.2.2) that in a large enough body of text,

there is likely to be redundancy; however, larger corpora also have an increased chance

of containing mutually contradictory statements, such as X inhibits Y and X does not

inhibit Y. The only methodical analysis of the epistemic characteristics of the biolog-

ical literature in an IE context was by Krauthammer et al. (2002), who performed a

flawed but interesting time-based study of the repetition and contradiction of claims

about biomolecular interactions, in order to allow contradictions to be resolved ratio-

nally in their own IE package. They developed a complex statistical model that aimed

to be able to predict whether a claim was really true or false via maximum likelihood

estimation, based on its patterns of agreement and disagreement over time and across

the corpus. This daring and vaguely hubristic experiment was tainted with circular-

ity from the start, as the ultimate truth or falsehood of the examples used to train the

model came solely from the decisions of domain experts—even though one of their key

points was that individual claims made by domain experts can’t necessarily be trusted.

To my knowledge, no tests of the model’s predictive power have been published. They

also showed that as the number of different interactions reported for an entity goes up,

the repetition rate for each of those claims increases, and the rate of conflicting claims

decreases. This was explained in terms of publication bias caused by a reluctance to

go against the status quo, but could equally well just mean that it is harder to make

mistakes when dealing with well-known and well-characterized entities.

One important point made by Krauthammer et al. though is that disagreement be-

tween two claims does not necessarily imply that one of them is false, since they might

both be true under different experimental conditions. An inhibitor might be useless

outside a certain temperature range, and a regulatory pathway may not be active in a

certain strain of an organism, but current IE techniques generally do not attempt to ex-

tract and record such details. Dependency graph analysis might help with such cases,

since prepositional phrases are often used to establish the context of sentential claims

and Chapter 3 demonstrates the ability of a good parser to attach prepositional depen-
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dencies accurately. In other cases, however, simple experimental errors or editing/peer-

reviewing oversights allow mistakes to creep in, meaning that the issue of contradiction

relates quite closely to that of trustworthiness as discussed above. The relationship be-

tween repetition and trustworthiness has already been discussed, and although it would

not be too implausible to take the most often repeated of two contradictory claims as

the more truthful, Krauthammer et al. asked whether 50 repetitions in low-impact jour-

nals outrank 10 citations in highly-influential ones, and claimed that their model would

be able to answer questions like this on a case-by-case basis. But impact factor is, as

we have seen, just one of the variables that decides the credibility of a claim. In a re-

alistic truth model, the overall trustworthiness of each individual repetition of a claim,

and indeed the certainty or uncertainty in the extraction of each repetition, would both

contribute to the aggregate trustworthiness of a claim across the whole corpus. How-

ever, with systems that do not calculate values for either of these variables, the best one

can hope for is that they average out over a large enough number of repetitions.

5.3.4 Truth in test data

Although the considerations above are of primary interest in large-scale knowledge

discovery projects, the concept of truth can be rather slippery in annotated develop-

ment/test corpora too. It should be required of any published corpus that it reports

inter-annotator agreement, as this is an upper limit on the accuracy of any system

trained on the corpus, but many do not. Quality control measures in fact vary con-

siderably, which is not surprising since corpus annotation projects also vary in size

and scope between those that involve teams of annotators with both linguistics and bi-

ology training between them, and those that are initiated by a single investigator for

in-house testing purposes. The general notion of truth can also vary between corpora

or tasks, implicitly or explicitly; the distinction between OAOS, OAOD, OARD and

OARC scoring models (see Section 5.2.2) reflects this, and an algorithm optimized to

perform well on one scoring model may not do as well on the others. There is also

less intentional variability, such as vagueness in the definition of ‘gene’ or ‘protein’ in

the annotation of entities; some projects explicitly include or exclude things like pro-

tein families or complexes, or other DNA elements like repeats or promoters, but do

not even necessarily follow their own guidelines reliably (Clegg and Shepherd, 2007b).

Another classic example of ambiguity comes from the LLL Challenge instructions: 2

“Notice that when the absence of interaction between two genes is explic-

itly stated, it is represented as interaction information. For example,

There likely exists another comK-independent mechanism of hag tran-

scription.” [their emphasis]

2http://genome.jouy.inra.fr/texte/LLLchallenge/
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It is not clear what this quote, in the description of the training data, means. Would

the annotators mark comK�hag as an interaction, as the highlighting suggests? And

if so, are we expected to follow this convention? The confusion arises partly because,

while this sentence does not describe an interaction between comK and hag, neither

does it claim an “absence of interaction” between these two entities; that would require

a sentence like comK does not interact with hag. The word another can be inter-

preted to mean two things: either that the authors have already discussed one comK-

independent mechanism of hag transcription, and they suspect that there is another one

waiting to be found, or that they have just discussed a comK-dependent mechanism but

they suspect another one exists which isn’t comK-dependent. In neither case though

does this sentence itself make any specific claim (positive or negative) about these two

entities. In addition, the claim about hag transcription isn’t even “explicitly stated”

but rather speculated about without reference to any evidential support, making this an

even worse choice of example sentence. Unfortunately the organizers gave no other

“absence of interaction” examples, and this one doesn’t even appear in the corpus, so

it is impossible to glean their intention.

One result of these different notions of truth is that it is impossible to fairly com-

pare evaluations of different systems on different tasks, unless one is very sure of the

parameters of each task. Even then, varying levels of difficulty between tasks con-

fuse the issue further. This is why high-quality, freely-available data, with transparent

conventions and clear standards of assessment, is vital to biological NLP.

5.4 Final remarks

I hope that the reader will forgive the length and rather discursive tone of this closing

chapter. It was my intention to draw attention to some interesting issues and unan-

swered questions in text mining that are rarely, if ever, critically analysed. Short pa-

pers presenting empirical results and engineering achievements are not always the best

medium for open-ended discussions of the dominant paradigms that guide research in

a particular field, so any other opportunities to step back and take a broad look over

one’s chosen field are always welcome.
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Appendix A

BioNERD: a named entity

recognition dictionary

The problem of biomolecular relationship extraction, as addressed in Chapter 4, relies

on the accurate identification of the biological entities between which the relationships

hold. The LLL Challenge corpus is designed so that this is not problematic; the en-

tities under consideration are named unambiguously and a comprehensive dictionary

is provided, meaning simple string matching is feasible. However, this kind of solu-

tion is generally not sufficient, for the reasons discussed in Section 1.8. Furthermore,

almost all freely-available solutionsa to this problem only handle named entity recog-

nition and not identification (sometimes referred to as grounding or normalization)—

although they will indicate the likely boundaries of entity names in text, they will not

attempt to map them to identifiers in genomic databases. This is a serious shortcoming

that limits the usefulness of these tools in real applications.

As an illustration of this issue, and a pedagogical demonstration of one fairly sim-

ple approach using deterministic rules, I developed a prototype system for both recog-

nizing and identifying gene and protein names, for a bioinformatics textbook (Clegg

and Shepherd, 2007b). This appendix is adapted from that chapter; it is included here

because although named entity identification is a separate issue from relationship ex-

traction, requiring very different solutions, it is absolutely a required element in any

practical relationship extraction system.

A.1 Background

In order to illustrate some of the challenges involved in text mining, and propose a

potential solution to the named entity problem which has a bearing on most natural

language projects in bioinformatics, I present a simple, high-throughput named entity
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recognition and identification protocol. Similar to the approaches of Cohen (2005)

Tsuruoka and Tsujii (2003a,b) and Fundel et al. (2005), this algorithm is designed for

and tested on the human genome, requires no training data, and provides a genomic

database accession number for each hit.b

The principles behind this approach are twofold. Firstly, although dictionary-based

methods have serious coverage limitations for most organisms, the kinds of nomencla-

ture variations that lead to false negative results are, to some extent, predictable and

automatically reproducible. Secondly, if broad coverage results in a large number of

false positives—acronyms, words, or phrases that resemble genuine entity names—an

existing named entity recognizer with high precision (or an ensemble of several) can be

employed later as a filter in order to prune the set of candidate hits. The experimental

protocol therefore proceeds as follows:

1. Construct a human gene/protein name dictionary from several databases

2. Generate plausible lexical and orthographic variations of each name

3. Compile a ‘keyword tree’ data structure to hold the dictionary in memory

4. Search a collection of sentences for names occurring in the keyword tree

5. Discard hits which do not agree with a third-party statistical named entity recog-

nizer

An implementation of this protocol—BioNERD, a biomedical named entity recog-

nition dictionary—is available from http://biotext.org.uk/ and can be easily

adapted and extended as discussed in Section A.10.

A.2 Collating the dictionary

The dictionary collation task can be broken down into the following discrete steps:

1. Collect human gene/protein symbols and full names from UniProt (Apweiler

et al., 2004), GeneCards (Rebhan et al., 1997) and Ensembl (Hubbard et al.,

2005)c

2. Join lists by Ensembl ID and remove redundant names

3. Collapse names to lower case

4. Remove most punctuationd

5. Replace all whitespace with logical token boundaries

6. Insert token boundaries between runs of letters and digits, and around the re-

maining punctuation
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7. Check for and remove redundant names again

The initial redundant list of unprocessed records from the three databases yielded

20,988 entities, of which all but 34 had at least one name, and 92,052 name-entity

pairs. The normalization process ensured that, for example, the names NF Kappa-B,

NF-Kappa B or NF-kappa-B would all lead to the same normalized form nf kappa b—

where the space now represents a logical token boundary rather than an actual ASCII

space character.

A.3 Generating the name variants

The name variant generation process is deterministic and rule-based, unlike the proba-

bilistic algorithm described by Tsuruoka and Tsujii (2003b), and has two components:

an orthographic rewriter, and a lexical rewriter. Both are applied recursively to each

normalized name in the dictionary until no new variations are generated. The lexical

rewriter runs first, taking the following steps:

1. For each token in the name. . .

(a) If token is in stopword list, generate a copy of the name with this token left

oute

(b) Add new name to dictionary

For a (normalized) name like nacht lrr and pyd containing protein 3 , for example,

the resulting variations will be nacht lrr pyd containing protein 3 , nacht lrr and pyd

containing 3, and nacht lrr pyd containing 3. Then the orthographic rewriter runs:

1. For each token in the name. . .

(a) If token is numeric and between 1 and 20. . .

i. Generate copy of name

ii. Replace this token in copy with Roman numeral equivalent

(b) Else, if token is Roman numeral between I and XX. . .

i. Generate copy of name

ii. Replace this token in copy with numeric equivalent

(c) Else, if token is single letter with Greek equivalent. . .

i. Generate first copy of name

ii. Replace this token in first copy with spelt-out Greek letter f

iii. Generate second copy of name

169



iv. Replace this token in second copy with SGML-encoded Greek char-

acterg

(d) Else, if token is spelt-out Greek letter. . .

i. Generate copy of name

ii. Replace this token in copy with single-letter equivalent

(e) Add new name(s) to dictionary

Thus, an original name such as ATP1B, having been normalized to the three-token

sequence atp 1 b, would be expanded by the orthographic rewriter to the following set

of names: atp 1 b, atp 1 beta, atp 1 &bgr;, atp i b , atp i beta, atp i &bgr;. h

Once again, redundant names for each entity were pruned after this process, as

were names that consisted of a single character, names with more than 10 tokens, and

names that exactly matched a list of around 5,000 common English words. This left

354,635 distinct names in the dictionary, of which 17,217 (4.9%) were ambiguous. i On

average, each entity had 18.1 names, and each name referred to 1.1 entities.

A.4 Compiling the keyword tree

In order to use the fast, scalable Aho-Corasick dictionary search algorithm, j the dictio-

nary must be compiled into a data structure called a keyword tree. k This takes several

minutes and a considerable amount of memory, l but allows the corpus to be searched

at a speed proportional only to the corpus size and not to the number of entities in the

dictionary.

A.5 Searching the corpus

Once the keyword tree is built, the corpus can be searched as follows:

1. For each sentence in the corpus. . .

(a) Collapse to lower case

(b) Remove punctuation as in Section A.2

(c) Retokenize as in Section A.2

(d) For each letter in the sentence. . .

i. Pass letter to Aho-Corasick algorithm

ii. If algorithm signals a hit ending here. . .

A. Store start and end points and content of hit

(e) For each hit in this sentence. . .

i. Remove hit if subsumed by another hitm
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Features in use � � �

Just normalization (tokens & punctuation) 23.1 31.0 26.4

+ Filtering of unsuitable names 40.4 30.9 35.0

+ Case insensitivity 35.6 41.4 38.3

+ Numeral substitution (Roman-Arabic) 35.6 42.0 38.7

+ Letter substitution (Roman-Greek) 35.6 42.4 38.7

+ Uninformative word removal 32.4 43.5 37.1

+ ABNER filtering (exact) 92.6 19.6 32.3

+ ABNER filtering (inexact) 58.6 37.9 46.0

ABNER baseline performance 82.3 81.4 81.9

Table A.1: Precision, recall and F-measure measured after implementing each feature, on

a set of 3,306 human-related sentences from GENETAG-05. All values are percentages.

A.6 Filtering the results

Like all purely dictionary-based methods, this approach makes no attempt to filter false

positives out of its results. However, it is trivial to employ a third-party named entity

recognizer based on word and sentence features as a filter. I used ABNER (Settles,

2005) as it is fairly easy to use, with a well-documented Java API and good published

performance scores, although most of the systems described in Section 1.8 or in (Clegg

and Shepherd, 2007b)—or an ensemble of several—could be used instead.

I used the filter in two modes; results for each are given below. In the exact mode,

all hits generated by the fast dictionary search were required to exactly match hits

generated by ABNER. This is equivalent to running ABNER first, and then searching

within the dictionary for the candidate entities it discovers, without allowing any fuzzi-

ness. In inexact mode, hits from the dictionary search are only required to overlap with

hits generated by ABNER in order to be retained. This is a looser criterion that is more

forgiving of boundary-detection disagreements between the two systems.

A.7 Evaluation

In order to evaluate the effectiveness of the technique, I derived a test dataset from the

non-species-specific GENETAG-05 corpus (Tanabe et al., 2005) by selecting sentences

which came from journals related to human biology or medicine, n or which contained

the strings human, patient or child . This yielded 3,306 sentences. I compared the

output of the system against this gold standard after enabling each major feature, cal-

culating the precision and recall score each time,o as well as the proportion of true

positives where the name refers to more than one entity. The results are presented in

Table A.1.
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A.8 Analysing the results

These results illustrate several important points. As with many NLP tasks, there is

a natural trade-off between precision, the proportion of predicted entity names which

are correct, and recall, the proportion of genuine entity names that are predicted. This

trade-off is most strikingly apparent in the difference between requiring exact matches

and allowing inexact matches when using ABNER as a filter.

The ABNER baseline performance is included to demonstrate what a non-dictionary-

based named entity recognizer is capable of, but it must be noted again that the output

of ABNER does not include links back to genomic database identifiers so it cannot

provide any information on which gene or protein has been tagged each time. The very

low recall score when allowing only exact matches with ABNER algorithm makes it

clear how few of the entities tagged by ABNER are present (in the exact same form) in

even an expanded dictionary. By contrast, the dictionary search algorithm makes many

more errors than ABNER, but provides a link to a genomic database (in this case, an

Ensembl record) for each entity it finds.

Because the test set was generated in a partly automated manner, I manually ex-

amined a random subset of 300 names in the test set which were missing from the

dictionary, in order to determine the cause of their omission. Although many were due

to genuine deficiencies in the dictionary, a considerable number (33, 11.0%) were oc-

currences of plural, family, group or otherwise generic names that I did not set out to

cover.p An even larger subset (44, 14.7%) were genes or proteins from other organisms

that happened to be mentioned in a human-relevant sentence, but as many as 20 (6.7%)

seemed to be annotator errors.q Taken together, these figures suggest that the actual

false negative (recall error) rates may be around a third lower than those reported in

Table A.1.

This prototype system was originally designed for a planned bibliometric investi-

gation into research coverage of the human genome, and thus was built with a gene’s-

eye-view of human biology. The results however drew attention to the inadequacy

of considering names for genes and for their protein products to be interchangeable,

a shortcut also taken by most named entity recognition projects. This practice disre-

gards the fact that biomedically important proteins are often hetero-oligomers or other

complexes composed of the products of several genes. r It must be noted in this con-

text, however, that even human experts do not find it trivial to distinguish mentions of

biomolecular entities into genes and proteins. Hatzivassiloglou et al. (2001) set three

specialists the task of classifying entity mentions into five categories: gene, protein,

RNA, ambiguous or wrongly extracted. They found that the three experts only agreed

unanimously 69% of the time, and only achieved a majority (two or three agreeing)

94% of the time.
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A.9 Dealing with ambiguity

Leaving aside this very specific kind of ambiguity, there are two kinds of ambiguity

that must be considered when detecting biological entities of one broadly-defined cat-

egory, as discussed in this appendix. The first is ambiguity between multiple referents

in that category, e.g. gene acronyms that stand for more than one gene, and the second

is ambiguity between entities of that category and strings of text that might represent

other classes of entity or any other words or phrases. The algorithm presented above,

as it stands, does not make any attempt to deal explicitly with either kind of ambiguity

internally. The latter kind of ambiguity is tackled by the use of ABNER as a filter, as a

given string may or may not be tagged as an entity name by ABNER depending on its

context in the sentence. The former kind needs a more subtle approach. These prob-

lems can be tackled individually or together, and both can be characterized as special

cases of the general problem of term-sense disambiguation which is not restricted to

biomedical NLP applications. I will briefly discuss some methods that have been or

could be applied to them.

The approach used by EBIMed and described by Gaudan et al. (2005) is geared

specifically towards the disambiguation of abbreviations, but is not restricted to enti-

ties of any particular class. It makes a distinction between local and global abbrevia-

tions; local abbreviations are those whose long forms are given before they are used,

and these are resolved with the help of an automatically extracted dictionary, while

global abbreviations, which do not have explicitly-stated long forms, require the use

of statistical term-frequency measures. A very different approach is proposed by Wid-

dows et al. (2003) for ambiguous biomedical terms from UMLS, and makes use of the

fact that UMLS comes with various hand-curated tables of related concepts. For each

possible sense (corresponding concept) of an ambiguous term, the algorithm counts the

number of related concepts that are referred to by terms in the textual neighbourhood of

the ambiguous term, and the sense with the highest count wins. Given the availability

of various hand-curated resources in the molecular biology domain that list already-

known relationships between genes, proteins and other entities or concepts, it is easy

to see how one might adapt this approach.

The National Center for Integrative Bioinformatics has developed a system similar

to this but using statistical document similarities rather than term relatedness (D. J.

States, U. of Michigan, pers. comm.). The document in which an ambiguous name

is found is compared to documents containing unambiguous names for each of the

possible referents of the name. The most likely referent is then selected according to

which document or documents are most similar to the document with the ambiguous

referent. Cohen (2005) use a simpler variation on this overall approach, which does not

consult other resources outside the document of interest. Instead they look elsewhere in

the same document for other, unambiguous names for the entities referred to by each
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ambiguous name. In the rare cases where this does not resolve the ambiguity—i.e.

more than one of the referents of the ambiguous name seem to be referred to by other

names—the ambiguous name is discarded.

There is one further kind of ambiguity which was not addressed here—ambiguity

between species. Many genes and proteins share names between organisms, and while

this may reflect sequence homology or functional equivalence, the level of similarity

can vary. Furthermore there is nothing preventing biomolecular entities in different

species having similar or identical names by accident. Witte et al. (2007) describe

an ontology-based entity identification system that looks for species names as well as

protein names, thus narrowing the number of possible database hits for a protein entity

to those with similar names in the species identified (where possible). It also performs

similar filtering on mutation information where this is available.

A.10 Concluding remarks

An important lesson from this worked example is that while naı̈ve dictionary-matching

methods perform comparatively poorly, a few simple variant generation methods can

improve recall by almost 50%, and these methods in conjunction with inexact filtering

from a high-performance named entity recognizer can almost double overall perfor-

mance (F-measure). The potential is great for improving on these early gains with a

more comprehensive dictionary,s and more variant generation rules. t

Although the precision, recall and F-measure scores for the dictionary algorithm

are considerably less than those achieved by ABNER on the same data, the advantage

of using an algorithm that returns an actual database identifier cannot be overlooked.

Furthermore, it must be noted that some of the existing text mining systems described

in Chapter 1 use simple exact-matching techniques that can only be expected to per-

form about as well as the lowest scores reported above. In a real-world application

based on our method, one might want to consider a ‘best-of-both-worlds’ approach—a

set of high-confidence annotations could first be made based on inexact agreement be-

tween the dictionary method and ABNER or another named entity recognizer, and then

augmented with a set of lower-confidence annotations obtained by finding the closest

fuzzy-matched name in the database to each of the remaining tags in the recognizer’s

output.
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Notes
aNotable exceptions include NLProt (Mika and Rost, 2004) and LingBlast (available by request from

http://alias-i.com/), both of which do provide database identifier mappings.
bFor cases where the same name refers to several distinct entities (homonyms) this method returns all of

the associated accession numbers.
cI treated genes and their protein products as interchangeable for the purposes of the investigation, a

shortcut that is common in many named entity recognition systems, although some of the drawbacks with

this approach are discussed in Section A.8.
dI retained & and ; as these are necessary for understanding SGML escape sequences, which sometimes

appear in MEDLINE to represent special characters—e.g. &agr; for �. I also kept + as it is useful for distin-

guishing positive ions, which are common in protein names, from similar-looking sequences of characters. I

decided to remove all instances of - though, as it is much more commonly used as a hyphen or dash which is

less selective.
eThis is a list of uninformative and optional words that occur in gene and protein names, such as the, of

and a, as well as generic terms such as gene, protein, precursor, molecule etc.
fe.g. alpha.
ge.g. &agr;. Note that this is a one-way translation as there are no SGML character codes in our dictio-

nary, although the reverse could be implemented straightforwardly.
hThe letter i is excluded from the Roman to Greek letters conversion, so as to avoid unnecessary and

unhelpful generation of the iota character every time a digit 1 was processed.
iThat is, referring to more than one entity.
jA thorough description of the algorithm and its associated data structure is given by Gusfield (1997);

rather than reimplement it myself, I adapted a Java version available at http://www.mcdowella.

demon.co.uk/programs.html .
kI added a token boundary character at the beginning and end of each entity name so that they would only

match when aligned with token boundaries in the corpus; this means that the name octn2 will be matched in

the string octn2-mediated , for example, but the name car will not be matched in the string carrier.
lMy non-optimized prototype implementation requires 768Mb of memory for the Java virtual machine

to complete the task happily.
mThis step ensures that, for example, the string OB receptor does not also register a hit for OB.
nI looked for journal names containing the strings Hum or Child , or Clin or Med but not Vet—the journal

names are supplied in standard abbreviated format.
oDue to the existence of multiple acceptable alternative annotations for many of the names in GENETAG-

05, this calculation was slightly more complicated than usual. I had to define a true positive as any predicted

name that matches any one of the alternative annotations for a given instance of an entity in GENETAG-05,

a false positive as any predicted name that matches none of the annotations in GENETAG-05, and a false

negative as a GENETAG-05 entity with no allowed alternative annotations predicted by our algorithm. Also,

since GENETAG-05 does not contain any kind of ‘instance identifier’, I had to preprocess the annotation lists

supplied to group annotations together based on overlaps, in order to determine which groups of annotations

referred to the same instance of the same entity. Finally, an additional level of complexity was added by the

fact that the dictionary algorithm will generate multiple hits for different entities where several entities share

the same name. For scoring purposes, each of these ambiguous hits was treated as a single (true or false)

positive.
pThese included cases such as E1 genes, anti-viral proteins, MHC class II promoters and blood hemoglobin.
qMany of these were non-gene/protein entities that had been tagged in error, such as statin (a class of

drug), platelet activating factor (a phospholipid derivative) and immunoperoxidase (a lab technique). Also
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present were several sequence features that broke the annotators’ own guidelines on what should be included,

for example DXS52 (a sequence-tagged site), Alu (a class of common repeat sequences) and HS40 (a

regulatory element).
rFor example, fibrinogen, nuclear factor (NF)-kappaB, casein and the immunoglobulin family.
sAn obvious way to improve on the dictionary we used would be to include gene/protein families as

distinct meta-entities, as these are oftened mentioned collectively by authors, for example MAPK or human

E2F. Another option would be to include names of domains (such as SH3 and PH), and complexes of

multiple gene products as discussed in Section A.8.
tFor example automatic acronym generation, re-ordering of words in long names, and prepending h (for

human) to short symbols as this is a common abbreviation in the literature.
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Appendix B

Glossary of linguistic terms

This appendix contains brief descriptions of the major linguistic terms used in this

thesis. Many of the descriptions are abridged from the Internet Grammar of English,

compiled by the Survey of English Usage at University College London:

http://www.ucl.ac.uk/internet-grammar/

Additional material was adapted from the corresponding entries in the English

Wikipedia:

http://en.wikipedia.org/

Adjective

Adjectives describe a quality or attribute of a noun, for example logical or silent . They

come in absolute, comparative and superlative forms: dark , darker, darkest . This is

known as modifying the noun.

Participial adjectives often end in -ed or -ing and resemble verbs. They are how-

ever a distinct grammatical category, as in you’re very annoying (participial) vs. you’re

annoying me (verb).

Adjunct

An adjunct is a phrase which modifies its parent phrase in order to supply additional

but optional information. Adjectives and adverbs are usually adjuncts; in the phrase the

old lady, for example, the adjective old is not actually required—the lady would have

been a complete noun phrase without it—but it added extra information to the meaning

(compare complements).
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Adverb

Adverbs, such as quickly or better, modify verbs, adjectives or other adverbs, in a

similar manner to adjectives modifying nouns. Like adjectives, they can be absolute,

comparative or superlative, via alternative endings or by modification with more or

most .

In fact, more or most (in this context) are themselves adverbs, known as degree

adverbs, along with other examples like quite or extremely.

Apposition

In an apposition, two noun phrases are placed alongside each other, in order that one

can restrict or otherwise modify the other. Sometimes they are separated parenthet-

ically by punctuation such as commas, brackets or dashes. Examples include human

homeobox gene (HOX); another protein, PAK2; and the forespore-specific sigma fac-

tor sigma(F) .

Clause

Clauses are sequences of words which are made up of phrases (including at least one

verb phrase) and can be nested within one another. For example, in I think I’d like

coffee, the subordinate clause I’d like coffee is nested within the matrix (or super-

ordinate) clause I think I’d like coffee.

There are various different classifications of clauses, depending on the form the

verb takes, the word used to introduce the clause, or the semantic function of the clause.

An important and diverse subclass is relative clauses, which are subordinate clauses

used to modify nouns, as in the man who lives beside us (the relative clause here is

who lives beside us).

Complement

A complement is a phrase which modifies its parent phrase in order to complete its

meaning. For example, in we gave James a present , the two noun phrases James and

a present are complements; without them, the verb gave is under-specified. Comple-

ments are often confused with adjuncts, but they have a different function and different

rules govern their usage.

Conjunction

A conjunction joins two words, phrases or clauses together into a single grammatical

unit. Coordinating conjunctions join their conjuncts together at the same grammati-

cal level, e.g. and in cold and wet or but in I play tennis but I don’t play well . In terms

of constituent trees, their conjuncts are siblings.
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By contrast, subordinating conjunctions are used to to join a subordinate clause

to its superordinate. In I’ll be home at nine if I can get a taxi , the conjunction if

introduces the subordinate clause if I can get a taxi which is syntactically dependent

upon its parent clause.

Constituent

Phrases, clauses and sentences are all types of constituent—hierarchically nestable

grammatical units.

Coreference

A coreference occurs when two or more noun (or pronoun) phrases refer to the same

referent (external thing). The most common kind of coreference is anaphora, where

one of the phrases (usually a pronoun) is resolvable by reference to the other phrase

(usually a noun). For example, consider the sentence katX is also a sigmaB-dependent

general stress gene, since it is strongly induced by heat . The pronoun it refers anaphor-

ically to the noun katX, and both refer to the same real-world entity, the katX gene.

Dependency

In the sense in which it is used in this thesis, a dependency is a directional syntactic

relationship between two words in a sentence. One word, the dependent, is said to

depend on the other, the governor; the role of the dependent in the sentence is con-

strained or supplied by its relationship to the governor, which is the equivalent (in

phrase-structure terms) of the head of a phrase.

For example, when an adjective modifies a noun or an adverb modifies a verb, the

modifier is the dependent and the word thus modified is the governor. Another example

would be the noun phrases which make up the subject and direct object of a verb. In this

case, the verb is the governor; the head nouns of the subject and object noun phrases

depend on the verb, but of course other words in the noun phrases depend in turn on

those nouns.

Determiner

Determiners are words which precede nouns and establish scope or quantity, as in a

taxi , those apples or many people. Numerals can also be used as determiners.

Ellipsis

An ellipsis or elliptical construction is a grammatical construction where a word or

phrase vital to interpretation is left out but can be understood from context. For ex-

ample, consider the following sentence: SpoIIID at low concentration repressed cotC
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transcription, whereas a higher concentration only partially repressed cotX transcrip-

tion. The second half, after the comma, is elliptical; the complete reading is whereas

a higher concentration of SpoIIID only partially repressed cotX transcription. The

phrase in bold is left unwritten but can be understood by a competent reader.

Such phenomena, although usually trivial for humans, can be very problematic for

NLP algorithms.

Genitive marker

The genitive marker is the ’s suffix for nouns indicating ownership, or just a bare apos-

trophe in the case of plural nouns ending with s: the boys’ pens.

Homonymy

Two words are said to be homonyms if they share the same spelling and pronunciation,

but have different and unrelated meanings (contrast polysemy).

Head

The central element of a phrase, the word on which the rest of the phrase depends,

is called the head of that phrase—the main verb in a verb phrase, the noun in a noun

phrase which the rest of the phrase modifies, etc.

Holonymy

One word is said to be a holonym of another if the referent of the other word is a

member or constituent part of its own referent, e.g. hand is a holonym of finger. This

is sometimes known informally as a ‘has-a’ relationship. Compare meronymy.

Hypernymy

One word is said to be a hypernym of another if its referent subsumes the meaning of

the other word, e.g. limb is a hypernym of arm. Compare hyponymy.

Hyponymy

One word is said to be a hyponym of another if its referent is subsumed by the meaning

of the other, e.g. arm is a hyponym of limb. Compare hypernymy.

Lemma

A lemma is a canonical, uninflected form of a word, such as phosphorylate for the

verbs phosphorylate, phosphorylates, phosphorylated and phosphorylating. Note how-

ever that the noun phosphorylation, although it comes from the same root as the verb
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forms, is in a different lexical category (part of speech) and thus has a different lemma

(the same as the singular form itself, phosphorylation).

The term stemming is sometimes used to refer to the process of automatically

retrieving the lemma of a word (more properly lemmatization), although it is also used

in a slightly different sense where a common stem phosphorylat- or even phosphoryl

would be offered for both the verbs and noun given above.

Meronymy

One word is said to be a meronym of another if its referent is a member or constituent

part of the other word’s referent, e.g. finger is a meronym of hand. This is sometimes

known informally as a ‘part-of’ relationship. Compare holonymy.

Morphology

This is the branch of linguistics concerned with the internal structure of words, for

example the relationships between the inflected forms of words (running, ran) and

their uninflected lemmas (run).

Noun

Nouns are commonly thought of as naming words, for concrete entities such as peo-

ple, places or things, as well as abstract and intangible concepts. Nouns which name

specific people, places or time periods on a calendar are known as proper nouns, e.g.

London or Tuesday; all others are common nouns.

Count nouns are those which can be preceded by a numeric quantifier, as in three

pens; all others are known as mass nouns or simply non-count nouns. Count and mass

nouns also differ in the determiners they can take.

Most nouns can take an -s suffix to indicate that they are plural (more than one in

number, compare singular) although there are many irregular plural forms too such as

children.

Number

In linguistic terms, this refers to the distinction between singular (referring to one en-

tity, as in myself or child) and plural (referring to more than one entity, as in ourselves

or children).

Object

The object of a verb is the complement of the verb phrase referring to the target or

recipient of the effect of the verb, e.g. the piano in David plays the piano. Ditransitive
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verb phrases like we gave John a present have a direct object and an indirect object;

the indirect object comes immediately after the verb, and the direct object after that.

A prepositional phrase which is the complement of a verb is sometimes referred to

as the prepositional object.

Person

The person of a verb refers to the relationship of its subject to the speaker/writer, and is

explained most succinctly with examples: first person is the speaker (as in I/we walk),

second person is the person spoken to (as in you walk), and third person is another

party (as in he/she/they/someone/a person/Jim walks).

The form of a verb changes to reflect person—the regular third person singular, for

example, acquiring a -s suffix as above.

Phrase

Phrases are grammatically complete blocks of a specific type (noun phrase, verb phrase

etc.) which can be treated as single units and used in place of a single word of the

corresponding type where appropriate. That is, a noun phrase (e.g. a noun phrase)

can be used anywhere a single noun can be used, even though it might contain several

words or nested phrases of other types.

Polysemy

A word is said to be polysemous if it has multiple related meanings (contrast homonymy).

Preposition

Prepositions are a rather diverse set of words which introduce modifying noun phrases

of various sorts. Many of them are spatial (behind) or temporal (after) in nature, oth-

ers indicate ownership (of ) or association (with), and some are used in an enormous

variety of contexts (by, for). Complex prepositions are two or three word expressions

which act as a single preposition, such as according to.

Pronoun

Sometimes regarded as a subset of nouns, pronouns are words which can replace a noun

in a sentence and refer to the same entity or concept. They include personal pronouns

like she and it , possessive pronouns like mine, reflexive pronouns like yourself , and

various other categories.
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Semantics

Semantics refers in general to the meaning of language—or the relationships between

language and reality—contrasting with syntax which refers to the form of language.

For example, the sentences ykuD was transcribed by SigK RNA polymerase and SigK

RNA polymerase transcribed ykuD are syntactically different but semantically equiv-

alent.

Sentence

A single clause is the simplest kind of sentence; a sentence can also consist of two or

more clauses joined by conjunction. While many people think of sentences as being

delimited by capital letters and full stops, these are of course merely typographical

conventions and not grammatical phenomena.

Subject

The subject of a verb is the noun phrase referring to the entity whose actions or at-

tributes the verb describes; in English, the noun phrase before the verb, as in the lion

roared or David plays the piano. However, see the entry on voice for an additional note

on subjects.

Syntax

Syntax refers to the structure of language and the grammatical rules by which words

(and smaller morphological units) are combined into longer sequences. It is not con-

cerned with the sense or truth-value of a sentence or other linguistic utterance, simply

its form; that is, a sentence can be entirely grammatical (syntactically well-formed) but

still false or completely nonsensical.

Chomsky (1957) famously used the sentence colorless green ideas sleep furiously

as an example of a sentence which is syntactically correct but meaningless.

Verb

Verbs are traditionally described as “action words” or “doing words”, although there

are many verbs like seem which do not describe an action as such. English verbs have

a base form or bare infinitive (talk) as well as present tense (talks) and past tense

(talked) forms. These are usually indicated by -s and -ed endings, but there are many

irregular verbs which behave differently. Verbs also have two participle forms which

usually end in -ing and -ed . The difference between the -ed participial and the past

tense can be seen more clearly in irregular verbs, e.g. he has taken and he took.

Verb phrases often contain auxiliary verbs which alter the meaning of the main

verb. This can be for temporal modification (has broken, will sing), ability (can’t
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cook), intent (won’t cook), and various other modes and aspects. The passive voice

is a special case discussed below.

Voice

Most clauses in English are in the active voice, where the subject of the verb is the agent

or actor causally responsible for the effects described by the verb. However, there is

also a passive voice construction using the auxiliary verb be and the -ed participle, and

often taking a prepositional complement (almost always introduced by by).

In these cases, the subject takes the semantic role usually filled by an object in an

active-voiced clause, and the by-complement (if present) takes the agent role, as in

David was congratulated by Paul . Although David is syntactically the subject, he is

the recipient of the congratulations rather than their source.
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Appendix C

Dictionary of linguistic labels

C.1 Part of speech tags

The following POS tags are defined by the Penn Treebank, and are used by GENIA and

the Stanford tools too. Additional tags corresponding to common punctuation symbols

are also in use but are not show here. Descriptions and usage guidelines are here:

ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz

CC Coordinating conjunction

CD Cardinal number

DT Determiner (article)

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective (inc. ordinal numbers)

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal verb

NN Common noun, singular or mass

NNS Common noun, plural
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NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending (’s)

PRP Personal pronoun

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection (exclamation)

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd-person singular present

VBZ Verb, 3rd-person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb
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C.2 Constituent labels

The following constituent labels are defined by the Penn Treebank, and are also allowed

by GENIA, apart from NX and NAC for which GENIA just uses NP. Descriptions and

usage guidelines are here:

ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/root.ps.gz

ADJP Adjective phrase

ADVP Adverb phrase

CONJP Conjunction phrase

FRAG Fragment

INTJ Interjection

LST List element

NAC ‘Not a Constituent’—prenominal modifier scope marker

NP Noun phrase

NX Head marker in complex noun phrases

PP Prepositional phrase

PRN Parenthetical phrase

PRT Particle (wrapper for RP words)

QP Quantifier Phrase (numerical modifiers of NP)

RRC Reduced relative clause

S Simple declarative clause (most sentences)

SBAR Subordinate clause

SBARQ Direct question introduced by a wh-word or -phrase

SINV Inverted declarative sentence (subject after verb)

SQ Inverted yes/no question or main phrase of a wh-question

UCP Unlike coordinated phrase (John liked apples and going swimming)

VP Verb phrase

WHADJP Wh-adjective phrase
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WHAVP Wh-adverb phrase

WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Unknown, uncertain, or unbracketable (e.g. typos)

C.3 Dependency labels

The following dependency type labels are used by the Stanford NLP tools. In addi-

tion to those listed here, dependencies are created on-the-fly to represent co-ordinating

conjunctions (e.g. conj and) and prepositions (e.g. prep from) created when col-

lapsing conjunction (e.g. and) and preposition (e.g. from) words into dependencies.

(If this operation is performed, the existing dependencies indication conjunctions and

prepositions will be removed.) The dependencies are arranged in a hierarchy of speci-

ficity which is not show here (see de Marneffe et al., 2006); less-specific dependencies

such as arg, mod and particularly dep (the most generic) are only assigned if a more

specific type cannot be determined from the input tree structure. When a description

refers to a phrase, the actual attachment is made to the head of the phrase. Dependency

types which can never be instantiated have been omitted from this list. Fuller descrip-

tions of the dependency types, and the patterns used to extract them from trees, are

in the Javadoc and source code for the class EnglishGrammaticalRelations

in the Stanford tools. These are available as part of the Stanford parser distribution,

available at:

http://nlp.stanford.edu/software/lex-parser.shtml

abbrev Attaches a parenthetical abbreviation to the parent noun phrase

acomp Attaches the adjectival complement of a verb

advcl Attaches an adverbial clause modifying a verb

advmod Attaches an adverb modifying a verb

agent Attaches the agent (logical subject) of a passive verb

amod Attaches an adjectival modifier of a noun

appos Attaches an appositional noun phrase modifying a parent NP

arg Attaches an argument of a phrase or clause

attr Attaches an attributive modifier of a verb phrase
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aux Attaches the auxiliary of main verb

auxpass Attaches the passive auxiliary of main verb

cc Attaches a coordinating conjunction to the previous conjoined element

ccomp Attaches the clausal complement of a verb

comp Attaches the complement of a verb

complm Attaches the complementizer of a clausal complement

conj Attaches a later conjoined element to an earlier one

cop Attaches a complement (verbal or adjectival) to a copular verb (e.g. is)

csubj Attaches the clausal subject of a verb

det Attaches the determiner (article) of a noun

dobj Attaches the direct object of a verb

expl Attaches an existential there to the verb

infmod Attaches an infinitive verb modifying a noun phrase

iobj Attaches the indirect object of a verb

mark Attaches the word marking (introducing) an adverbial complement

mod Attaches a modifier of a verb

neg Attaches a negation word (e.g. not) to the negated word

nn Attaches a prenominal modifier in a compound noun phrase

nsubj Attaches the nominal subject of a verb

nsubjpass Attaches the nominal subject of a passive verb

num Attaches a numeric modifier of a noun

number Attaches part of a complex numeric phrase

obj Attaches the object of a verb

partmod Attaches a participle verb modifying a noun phrase

pobj Attaches the prepositional object of a verb to the preposition

poss Attaches the possessor to the possessee in ’s possession
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possessive Attaches the ’s suffix to the possessor in possession

preconj Attaches any preconjunction modifiers of a conjunction

pred Attaches the predicate of a verb

predet Attaches any predeterminer modifiers of a noun

prep Attaches a preposition to a noun or verb phrase

prt Attaches the particle to the main verb in a phrasal verb

punct Attaches punctuation symbols to the head of the phrase

purpcl Attaches a purpose clause modifying a verb (introduced by in order to)

rcmod Attaches a relative clause modifying a noun

ref Attaches the word introducing a relative clause to the modified noun

rel Attaches the ‘relative’ of a relative clause

subj Attaches the subject of verb

tmod Attaches a temporal modifier or a verb or adjective

xcomp Attaches the clausal complement of a verb with an external subject

xsubj Attaches the ‘controlling’ subject of a verb in a subordinate clause
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Appendix D

MPL language specification

The following sections describe the syntax of MPL (see Section 4.4) in extended

Backus-Naur form (ISO/IEC 14977), along with some notes on semantics.

D.1 File structure

entry = comment | rule ;

comment = ( "#", ? any text ?, newline ) |

newline ;

rule = ( match rule, newline ) |

( pattern rule, newline ) |

( replacement rule, newline ) ;

newline = ? system-specific newline character(s) ? ;

Comments introduced with a # character, and blank lines, are ignored.

D.2 Match rules

match rule = { "!" }, "match ", variable, " = ", regexp ;

variable = ( "@" | "#" ), letter, { letter} ;

letter = "A" | "B" | "C" | "D" | "E" | "F" | "G" |

"H" | "I" | "J" | "K" | "L" | "M" | "N" |

"O" | "P" | "Q" | "R" | "S" | "T" | "U" |
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"V" | "W" | "X" | "Y" | "Z" ;

regexp = ? regular expression (Java syntax) ? ;

Match rules define regular expressions for matching against words, POS tags or arc

labels in patterns (see below). Those beginning with the ! character are inverted; that

is, they match any node to which the regular expression does not match.

Each regular expression is assigned to a variable, which may be identified either by

a # or @ symbol. These variables can be used when writing patterns. The choice of

symbol divides the variables into two subsets and allows us to write replacement rules

(see below) that target one subset only.

D.3 Pattern rules

pattern rule = "pattern", newline, node, newline, "end" ;

node = pos tag, "˜˜", ( word | composite ),

{ " ", child arc } ;

pos tag = variable | literal ;

word = variable | literal ;

literal = ? any non-whitespace text ? ;

composite = "{", word, { "_", word }, "}" ;

child arc = "( ", arc label, " ", node, " )" ;

arc label = variable | literal ;

Pattern rules are textual representations of subgraphs (graph fragments) to be matched

against whole-sentence dependency graphs. The first node in the pattern is the root

node; each node may have one or more child arcs which themselves end in nodes. This

recursive definition means that patterns of arbitrary width and depth may be defined.

The order in which child arcs are listed is not important. Excess whitespace within

patterns is ignored, allowing the user to format them in a visually appealing manner,

using line breaks, indentation etc. However begin and end must occur on lines by

themselves.

Words, POS tags and arc labels (dependency types) can be specified in terms of

variables (see above) or literal strings. A variable’s regular expression can match any-
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VBD depended

@NSUBJ prep on

@NOUN @PROCESS

prep of

@NOUN @AGENT

@NOUN @TARGET

Figure D.1: A graphical representation of an MPL pattern rule, showing the constraints

on words, POS tags and dependency types. This pattern will match clauses like Entityaa

depended on expression of Entityab .

where in the target string to count, but literals must match the entire target string ex-

actly. For example, an arc label given as the literal VB would not match against a VBD

dependency, but the regexp /VB/ would. Composites consist of variables and liter-

als, separated by underscores, which match any one character. These sequences must

match the target string contiguously; excess material at either end is ignored.

Obviously, a pattern must be compiled into an in-memory graph of Java objects

before it can be used. Figure D.1 shows a graphical representation of the structure of

the pattern defined as follows:

pattern

VBD˜˜@DEPENDED

( prep_on @NOUN˜˜@AGENT )

( @NSUBJ @NOUN˜˜@PROCESS ( prep_of @NOUN˜˜@TARGET ) )

end

D.4 Replacement rules

replacement rule = "replace ", old text, " = ", new text ;

original text = ? any string ? ;

new text = ? any string ? ;

Replacement rules allow unconstrained search-and-replace functionality over patterns

before they are compiled, allowing variant patterns to be easily generated. Typically,

the string to be replaced would be a single node definition, or a POS tag or arc label, or

a variable, but this is not mandated by the language.
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Note that replacement works on the raw text of a pattern, so unexpected whitespace

inside a string can prevent a match.

On initially reading an MPL file, the MPL parser builds a pool of pattern rules

(those specified explicitly in the file) and a list of replacement rules in the order they

occur in the file. One by one, each replacement rule is applied to every pattern in

the pool, and any new patterns generated are added to the pool, so that subsequent

replacement rules operate on them as well as on the original ‘seed’ set. Thus the order

the replacement rules are declared makes a difference to the ultimate outcome. Note

that a replacement rule can match a pattern in multiple places, generating a new pattern

for each distinct combination of matches.

D.5 An example

Consider the following simple MPL file.

# Match rules

match @AGENT = Entity[a-z]{1,2}

match @TARGET = Entity[a-z]{1,2}

# Pattern rules

pattern

VB˜˜activate

( nsubj NN˜˜@AGENT )

( dobj NN˜˜@TARGET )

end

# Replacement rules

replace VB˜˜activate = VBZ˜˜activates

replace NN˜˜@TARGET = expression ( prep_of NN˜˜@TARGET )

The match rules define regular expressions to identify the agent and target in the place-

holder form Entityaa, where Entityaa could be any placeholder composed of the string

Entity and two lower-case letters. This is the minimum set of variables required

to retrieve interactions. In the current implementation, the two variables @AGENT

and @TARGET are treated differently from other variables, in that their bindings in

successfully-matched patterns are saved and used to generate interactions.
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The pattern rule matches just the simple fragment Entityaa activate Entitybb. The

first replacement rule generates another pattern which matches Entityaa activates Enti-

tybb, while the second replaces the whole target node with a prepositionally-modified

noun. This is applied to both the original pattern and the new one generated by the first

replacement rule, resulting in two new patterns that match Entityaa activate expression

of Entitybb and Entityaa activates expression of Entitybb.
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ing and using Parsed Corpora, Dordrecht. Kluwer.

Lin, Y.-H. and Liang, T. (2004). Pronominal and sortal anaphora resolution for biomed-

ical literature. In Proceedings of the ROCLING XVI Conference on Computational

Linguistics and Speech Processing, Taipei, Taiwan.

Litrán, J. C. C., Satou, K., and Torisawa, K. (2004). Improving the identification

of non-anaphoric it using support vector machines. In N. Collier, P. Ruch, and

A. Nazarenko, editors, Proceedings of the International Joint Workshop on Natural

Language Processing in Biomedicine and its Applications (JNLPBA), pages 58–61,

Geneva, Switzerland.

208



Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1994). Building a large an-

notated corpus of English: The Penn Treebank. Computational Linguistics, 19(2),

313–330.

McClosky, D., Charniak, E., and Johnson, M. (2006). Reranking and self-training for

parser adaptation. In Proceedings of the 21st International Conference on Compu-

tational Linguistics and 44th Annual Meeting of the Association for Computational

Linguistics, pages 337–344, Sydney, Australia. Association for Computational Lin-

guistics.

McCray, A. T., Bodenreider, O., Malley, J. D., and Browne, A. C. (2001). Evaluating

UMLS strings for natural language processing. In Proceedings of the American

Medical Informatics Association Symposium, pages 448–452. Hanley and Belfus,

Inc.

Merlo, P. and Stevenson, S. (2001). Automatic verb classification based on statistical

distributions of argument structure. Computational Linguistics, 27(3), 373–408.

Mika, S. and Rost, B. (2004). Protein names precisely peeled off free text. Bioinfor-

matics, 20(S1), i241–i247.

Miller, S., Fox, H., Ramshaw, L., and Weischedel, R. (2000). A novel use of statistical

parsing to extract information from text. In Proceedings of the 1st Meeting of the

North American Chapter of the Association for Computational Linguistics.

Munroe, R. (2006). Computational linguistics. http://xkcd.com/114/.

Mutalik, P. G., Deshpande, A., and Nadkarni, P. M. (2001). Use of general-purpose

negation detection to augment concept indexing of medical documents: A quantita-

tive study using the umls. Journal of the American Medical Informatics Association,

8(6), 598–609.

Nédellec, C. (2005). Learning Language in Logic—Genic Interaction Extraction Chal-

lenge. In Proceedings of Learning Language in Logic (LLL05), Bonn, Germany.

Niu, Y., Hirst, G., McArthur, G., and Rodriguez-Gianolli, P. (2003). Answering clinical

questions with role identification. In S. Ananiadou and J. Tsujii, editors, Proceed-

ings of the ACL 2003 Workshop on Natural Language Processing in Biomedicine,

Sapporo, Japan. Association for Computational Linguistics.

Och, F. J., Gildea, D., Khudanpur, S., Sarkar, A., Yamada, K., Fraser, A., Kumar, S.,

Shen, L., Smith, D., Eng, K., Jain, V., Jin, Z., and Radev, D. (2004). A smorgas-

bord of features for statistical machine translation. In D. M. Susan Dumais and

S. Roukos, editors, HLT-NAACL 2004: Main Proceedings, pages 161–168, Boston,

Massachusetts, USA. Association for Computational Linguistics.

209



Park, K.-M., Kim, S.-H., Lee, K.-J., Lee, D.-G., and Rim, H.-C. (2004). Incorporat-

ing lexical knowledge into biomedical NE recognition. In N. Collier, P. Ruch, and

A. Nazarenko, editors, Proceedings of the International Joint Workshop on Natural

Language Processing in Biomedicine and its Applications (JNLPBA), pages 76–79,

Geneva, Switzerland.

Polanyi, L., Culy, C., van den Berg, M., Thione, G. L., and Ahn, D. (2004). A rule

based approach to discourse parsing. In M. Strube and C. Sidner, editors, Pro-

ceedings of the 5th SIGdial Workshop on Discourse and Dialogue, pages 108–117,

Cambridge, Massachusetts, USA. Association for Computational Linguistics.
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